Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Imperial College Lon...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article . 2023
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/2023.0...
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.25418/cr...
Other literature type . 2023
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.25418/cr...
Other literature type . 2023
License: CC BY
Data sources: Datacite
versions View all 10 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Active mesh and neural network pipeline for cell aggregate segmentation

Authors: Matthew B. Smith; Hugh Sparks; Jorge Almagro; Agathe Chaigne; Axel Behrens; Chris Dunsby; Guillaume Salbreux;

Active mesh and neural network pipeline for cell aggregate segmentation

Abstract

AbstractSegmenting cells within cellular aggregates in 3D is a growing challenge in cell biology, due to improvements in capacity and accuracy of microscopy techniques. Here we describe a pipeline to segment images of cell aggregates in 3D. The pipeline combines neural network segmentations with active meshes. We apply our segmentation method to cultured mouse mammary duct organoids imaged over 24 hours with oblique plane microscopy, a high-throughput light-sheet fluorescence microscopy technique. We show that our method can also be applied to images of mouse embryonic stem cells imaged with a spinning disc microscope. We segment individual cells based on nuclei and cell membrane fluorescent markers, and track cells over time. We describe metrics to quantify the quality of the automated segmentation. Our segmentation pipeline involves a Fiji plugin which implement active meshes deformation and allows a user to create training data, automatically obtain segmentation meshes from original image data or neural network prediction, and manually curate segmentation data to identify and correct mistakes. Our active meshes-based approach facilitates segmentation postprocessing, correction, and integration with neural network prediction.Statement of significanceIn vitro culture of organ-like structures derived from stem cells, so-called organoids, allows to image tissue morphogenetic processes with high temporal and spatial resolution. Three-dimensional segmentation of cell shape in timelapse movies of these developing organoids is however a significant challenge. In this work, we propose an image analysis pipeline for cell aggregates that combines deep learning with active contour segmentations. This combination offers a flexible and efficient way to segment three-dimensional cell images, which we illustrate with by segmenting datasets of growing mammary gland organoids and mouse embryonic stem cells.

Keywords

Cell Nucleus, 570, Microscopy, Neural Networks, Image Processing, Computer-Assisted/methods, Image Processing, 590, 610, Fluorescence/methods, Computer, Mice, Microscopy, Fluorescence, Computer-Assisted/methods, Image Processing, Computer-Assisted, Animals, Computational Tool, Neural Networks, Computer, Microscopy, Fluorescence/methods, Structural Biology & Biophysics, Computational & Systems Biology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
hybrid