Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Scientific Computing
Article . 2025 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Cole–Hopf Transformation Based Fourth-Order Multiple-Relaxation-Time Lattice Boltzmann Model for the Coupled Burgers’ Equations

A Cole-Hopf transformation based fourth-order multiple-relaxation-time lattice Boltzmann model for the coupled Burgers' equations
Authors: Ying Chen; Xi Liu; Zhenhua Chai; Baochang Shi;

A Cole–Hopf Transformation Based Fourth-Order Multiple-Relaxation-Time Lattice Boltzmann Model for the Coupled Burgers’ Equations

Abstract

In this work, a Cole-Hopf transformation based fourth-order multiple-relaxation-time lattice Boltzmann (MRT-LB) model for d-dimensional coupled Burgers' equations is developed. We first adopt the Cole-Hopf transformation where an intermediate variable θis introduced to eliminate the nonlinear convection terms in the Burgers' equations on the velocity u=(u_1,u_2,...,u_d). In this case, a diffusion equation on the variable θcan be obtained, and particularly, the velocity u in the coupled Burgers' equations is determined by the variable θand its gradient term \nablaθ. Then we develop a general MRT-LB model with the natural moments for the d-dimensional transformed diffusion equation and present the corresponding macroscopic finite-difference scheme. At the diffusive scaling, the fourth-order modified equation of the developed MRT-LB model is derived through the Maxwell iteration method. With the aid of the free parameters in the MRT-LB model, we find that not only the consistent fourth-order modified equation can be obtained, but also the gradient term $\nablaθ$ can be calculated locally by the non-equilibrium distribution function with a fourth-order accuracy, this indicates that theoretically, the MRT-LB model for $d$-dimensional coupled Burgers' equations can achieve a fourth-order accuracy in space. Finally, some simulations are conducted to test the MRT-LB model, and the numerical results show that the proposed MRT-LB model has a fourth-order convergence rate, which is consistent with our theoretical analysis.

Keywords

Finite difference methods for boundary value problems involving PDEs, multiple-relaxation-time lattice Boltzmann model, FOS: Mathematics, Particle methods and lattice-gas methods, \(d\)-dimensional coupled Burgers' equations, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Stability and convergence of numerical methods for boundary value problems involving PDEs, Cole-Hopf transformation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green