Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Вестник Донского гос...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Engineering Research
Article . 2019
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Method of terminal control in ascent segment of unmanned aerial vehicle with ballistic phase

Authors: N. Y. Polovinchuk; S. V. Ivanov; M. Y. Zhukova; D. G. Belonozhko;

Method of terminal control in ascent segment of unmanned aerial vehicle with ballistic phase

Abstract

Introduction. The solution to the problem on the centroidal motion control synthesis (guidance problem) of an unmanned aerial vehicle (UAV) with long-range capabilities in the boost phase is considered. Control condition requires optimum fuel consumption. The principle of dynamic programming considering the restrictions to the vector modulus of the thrust output is used to solve the problem. The implementation of terminal guidance requires the formation of control as a function of the object state at the end of the ascent phase. The attainment of these boundary conditions determines the further transition to the ballistic flight phase.Materials and Methods. Bellman’s principle of dynamic programming is the most reasonable from the point of view of the implementability of the computationally efficient on-board algorithms and the solution to the problems in the form of synthesis. With natural scarcity of thrust and energy resources on board, this principle enables to obtain solutions free from the switching functions. In this case, the optimal control is a smooth function (without derivative discontinuity) of the current and final parameters of the UAV.Research Results. A new algorithmic method for the synthesis of terminal motion control is developed. Its difference is that the UAV movement control in the ascent phase is formed by the function of the motion actual and terminal parameters. This ensures movement along an energetically optimal trajectory into the given region of space. The problem solution results enable to build closed terminal guidance algorithms for the boost phase of the UAV trajectory with long-range capabilities. Such algorithms have good convergence and injection accuracy due to the prediction of parameters during the flight at a shorter time interval.Discussion and Conclusions. The most preferred is the principle of dynamic programming. It should be used when solving the problem on the centroidal motion control synthesis (guidance problem) of the UAV with long-range capabilities in the boost phase.

Keywords

boost phase, pitching angle, boundary conditions, ballistic flight phase., angle of attack, TA401-492, terminal guidance, direction cosines, unmanned aerial vehicle (uav), Materials of engineering and construction. Mechanics of materials

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold