Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.3...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.3233/shti24...
Part of book or chapter of book . 2024 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automatic Classification of Conclusions from Multi-Tracer Reports of PET Brain Imaging in Cognitive Impairment

Authors: Goldman, Jean-Philippe; Jane Soler, Pablo; Zaghir, Jamil; Andrade Teixeira, Eliluane Perazio; Peretti, Debora; Garibotto, Valentina; Lovis, Christian;

Automatic Classification of Conclusions from Multi-Tracer Reports of PET Brain Imaging in Cognitive Impairment

Abstract

The goal of this paper is to build an automatic way to interpret conclusions from brain molecular imaging reports performed for investigation of cognitive disturbances (FDG, Amyloid and Tau PET) by comparing several traditional machine learning (ML) techniques-based text classification methods. Two purposes are defined: to identify positive or negative results in all three modalities, and to extract diagnostic impressions for Alzheimer’s Disease (AD), Fronto-Temporal Dementia (FTD), Lewy Bodies Dementia (LBD) based on metabolism of perfusion patterns. A dataset was created by manual parallel annotation of 1668 conclusions of reports from the Nuclear Medicine and Molecular Imaging Division of Geneva University Hospitals. The 6 Machine Learning (ML) algorithms (Support Vector Machine (Linear and Radial Basis function), Naive Bayes, Logistic Regression, Random Forrest, and K-Nearest Neighbors) were trained and evaluated with a 5-fold cross-validation scheme to assess their performance and generalizability. The best classifier was SVM showing the following accuracies: FDG (0.97), Tau (0.94), Amyloid (0.98), Oriented Diagnostic (0.87 for a diagnosis among AD, FTD, LBD, undetermined, other), paving the way for a paradigm shift in the field of data handling in nuclear medicine research.

Keywords

Support Vector Machine, 616.0757, Brain / diagnostic imaging, Cognitive Dysfunction / classification, Brain, Reproducibility of Results, Sensitivity and Specificity, Machine Learning, Alzheimer Disease, Positron-Emission Tomography, Text classification, Brain molecular imaging reports, Humans, Cognitive Dysfunction / diagnostic imaging, Cognitive Dysfunction, Nuclear Medicine, Alzheimer Disease / classification, Alzheimer Disease / diagnostic imaging, Switzerland, Natural Language Processing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid