Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1103/fy8y-b...
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-CEA
Article . 2025
Data sources: HAL-CEA
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Study of deeply virtual Compton scattering at the future electron-ion collider

Authors: E. C. Aschenauer; V. Batozskaya; S. Fazio; A. Jentsch; J. Kim; K. Kumerički; H. Moutarde; +5 Authors

Study of deeply virtual Compton scattering at the future electron-ion collider

Abstract

This study presents the impact of future measurements of deeply virtual Compton scattering (DVCS) with the ePIC detector at the electron-ion collider (EIC), currently under construction at Brookhaven National Laboratory. The considered process is sensitive to generalized parton distributions (GPDs), the understanding of which is a cornerstone of the EIC physics program. Our study marks a milestone in the preparation of DVCS measurements at EIC and provides a reference point for future analyses. In addition to presenting distributions of basic kinematic variables obtained with the latest ePIC design and simulation software, we examine the impact of future measurements on the understanding of nucleon tomography and DVCS Compton form factors, which are directly linked to GPDs. We also assess the impact of radiative corrections and background contribution arising from exclusive π0 production.

Keywords

[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph], [PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th], Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), [PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex], Nuclear Theory, [PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex], FOS: Physical sciences, Nuclear Experiment (nucl-ex), Nuclear Experiment, High Energy Physics - Experiment

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid