Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Radiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Radiology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Real-life benefit of artificial intelligence-based fracture detection in a pediatric emergency department

Authors: Maria Ziegner; Johanna Pape; Martin Lacher; Annika Brandau; Tibor Kelety; Steffi Mayer; Franz Wolfgang Hirsch; +2 Authors

Real-life benefit of artificial intelligence-based fracture detection in a pediatric emergency department

Abstract

Abstract Objectives This study aimed to evaluate the performance of an artificial intelligence (AI)-based software for fracture detection in pediatric patients within a real-life clinical setting. Specifically, it sought to assess (1) the stand-alone AI performance in real-life cohort and in selected set of medicolegal relevant fractures and (2) its influence on the diagnostic performance of inexperienced emergency room physicians. Materials and methods The retrospective study involved 1672 radiographs of children under 18 years, obtained consecutively (real-life cohort) and selective (medicolegal cohort) in a tertiary pediatric emergency department. On these images, the stand-alone performance of a commercially available, deep learning-based software was determined. Additionally, three pediatric residents independently reviewed the radiographs before and after AI assistance, and the impact on their diagnostic accuracy was assessed. Results In our cohort (median age 10.9 years, 59% male), the AI demonstrated a sensitivity of 92%, specificity of 83%, and accuracy of 87%. For medicolegally relevant fractures, the AI achieved a sensitivity of 100% for proximal tibia fractures, but only 68% for radial condyle fractures. AI assistance improved the residents’ patient-wise sensitivity from 84 to 87%, specificity from 91 to 92%, and diagnostic accuracy from 88 to 90%. In 2% of cases, the readers, with the assistance of AI, erroneously discarded their correct diagnosis. Conclusion The AI exhibited strong stand-alone performance in a pediatric setting and can modestly enhance the diagnostic accuracy of inexperienced physicians. However, the economic implications must be weighed against the potential benefits in patient safety. Key Points Question Does an artificial intelligence-based software for fracture detection influence inexperienced physicians in a real-life pediatric trauma population? Findings Addition of a well-performing artificial intelligence-based software led to a limited increase in diagnostic accuracy of inexperienced human readers. Clinical relevance Diagnosing fractures in children is especially challenging for less experienced physicians. High-performing artificial intelligence-based software as a “second set of eyes,” enhances diagnostic accuracy in a common pediatric emergency room setting. Graphical Abstract

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
hybrid