Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SIAM Journal on Discrete Mathematics
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Odd Paths, Cycles, and \(T\)-Joins: Connections and Algorithms

Authors: Ildikó Schlotter; András Sebő;

Odd Paths, Cycles, and \(T\)-Joins: Connections and Algorithms

Abstract

Minimizing the weight of an edge set satisfying parity constraints is a challenging branch of combinatorial optimization as witnessed by the binary hypergraph chapter of Alexander Schrijver's book ``Combinatorial Optimization" (Chapter 80). This area contains relevant graph theory problems including open cases of the Max Cut problem and some multiflow problems. We clarify the interconnections between some of these problems and establish three levels of difficulties. On the one hand, we prove that the Shortest Odd Path problem in undirected graphs without cycles of negative total weight and several related problems are NP-hard, settling a long-standing open question asked by Lovász (Open Problem 27 in Schrijver's book ``Combinatorial Optimization''). On the other hand, we provide an efficient algorithm to the closely related and well-studied Minimum-weight Odd $T$-Join problem for non-negative weights: our algorithm runs in FPT time parameterized by $c$, where $c$ is the number of connected components in some efficiently computed minimum-weight $T$-join. If negative weights are also allowed, then finding a minimum-weight odd $\{s,t\}$-join is equivalent to the Minimum-weight Odd $T$-Join problem for arbitrary weights, whose complexity is still only conjectured to be polynomial-time solvable. The analogous problems for digraphs are also considered.

24 pages, 2 figures

Keywords

FOS: Computer and information sciences, 68Q17 (Primary) 05C85, 05C12, 68R10, 68Q25 (Secondary), G.2.1, G.2.2, [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], Computational Complexity (cs.CC), F.2.2; G.2.1; G.2.2, 004, Computer Science - Computational Complexity, [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), F.2.2

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green