Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ITU Academic Open Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Arabian Journal for Science and Engineering
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aperta - TÜBİTAK Açık Arşivi
Other literature type . 2025
License: CC BY
https://dx.doi.org/10.60692/yn...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/tj...
Other literature type . 2024
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

From Material to Field Test: An Improved Under Sleeper Pad Model

من المواد إلى الاختبار الميداني: تحسين تحت نموذج وسادة النوم
Authors: Arif Ulu; Muzaffer Metin; Aytaç Arıkoğlu; Özgür Demir;

From Material to Field Test: An Improved Under Sleeper Pad Model

Abstract

Abstract This study aims to determine the stiffness values of under sleeper pad (USP) and rail pad (RP) components to reduce the high-amplitude vibrations that occur in the transition zones of some specific structures such as viaducts in ballasted railways. The conventional method of simulating USPs and RPs as spring–dashpot elements in the Kelvin–Voigt model is inadequate due to the absence of frequency and temperature dependencies in the model. The study proposes a new analytical model that considers USPs and RPs as viscoelastic (VE) materials and integrates them into the ballasted railway superstructure model by adding unit masses avoiding mathematical singularity. The process includes material testing, field measurements, and validation of the proposed model with finite element model analysis. The effect of ambient temperature and material modelling on the superstructure’s dynamic response in the frequency domain is analysed in detail. To account for VE behaviours of the resilient elements, the generalised Maxwell model (GMM) is chosen via unit mass implementation compared to other VE models. The obtained results show that the dynamic response of the railway superstructure is 8–10 times sensitive to temperature variation. This demonstrates how important it is to include the temperature-dependent dynamics of the elastomer material in the model. According to the other results that were obtained, the use of USP in transition zones does not solve the vibration problem radically. Bridge dynamic responses are also sensitive to the mass of the bridge rather than its stiffness.

Keywords

Wear Mechanisms, Composite material, Kelvin–Voigt, FOS: Mechanical engineering, Structural engineering, DMA, 510, Dynamics of Railway Track and Vehicles, Engineering, generalised Maxwell model, viscoelastic, Field (mathematics), FOS: Mathematics, unit mass model, Mechanical Engineering, Pure mathematics, 624, railway, USP, Finite Element Simulation and Experimental Validation of Fretting Wear, Materials science, High-Temperature Sliding Wear, Analysis and Control of Axially Moving Dynamics, Control and Systems Engineering, Mechanics of Materials, transition zone, Physical Sciences, under sleeper pad, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid