Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Optimization Theory and Applications
Article . 2022 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Riemannian Stochastic Variance-Reduced Cubic Regularized Newton Method for Submanifold Optimization

Riemannian stochastic variance-reduced cubic regularized Newton method for submanifold optimization
Authors: Dewei Zhang; Sam Davanloo Tajbakhsh;

Riemannian Stochastic Variance-Reduced Cubic Regularized Newton Method for Submanifold Optimization

Abstract

We propose a stochastic variance-reduced cubic regularized Newton algorithm to optimize the finite-sum problem over a Riemannian submanifold of the Euclidean space. The proposed algorithm requires a full gradient and Hessian update at the beginning of each epoch while it performs stochastic variance-reduced updates in the iterations within each epoch. The iteration complexity of $O(ε^{-3/2})$ to obtain an $(ε,\sqrtε)$-second-order stationary point, i.e., a point with the Riemannian gradient norm upper bounded by $ε$ and minimum eigenvalue of Riemannian Hessian lower bounded by $-\sqrtε$, is established when the manifold is embedded in the Euclidean space. Furthermore, the paper proposes a computationally more appealing modification of the algorithm which only requires an inexact solution of the cubic regularized Newton subproblem with the same iteration complexity. The proposed algorithm is evaluated and compared with three other Riemannian second-order methods over two numerical studies on estimating the inverse scale matrix of the multivariate t-distribution on the manifold of symmetric positive definite matrices and estimating the parameter of a linear classifier on the Sphere manifold.

Related Organizations
Keywords

Programming in abstract spaces, variance reduction, Stochastic programming, manifold optimization, Methods of quasi-Newton type, Riemannian optimization, stochastic optimization, Optimization and Control (math.OC), FOS: Mathematics, cubic regularization, Mathematics - Optimization and Control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green