Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Електротехніка і Еле...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Електротехніка і Електромеханіка
Article . 2023 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of efficient multilevel inverter for photovoltaic energy system and electric vehicle applications

Authors: E. Parimalasundar; R. Jayanthi; K. Suresh; R. Sindhuja;

Investigation of efficient multilevel inverter for photovoltaic energy system and electric vehicle applications

Abstract

Introduction. This research presents a simple single-phase pulse-width modulated 7-level inverter topology for renewable system which allows home-grid applications with electric vehicle charging. Although multilevel inverters have appealing qualities, their vast range of application is limited by the use of more switches in the traditional arrangement. As a result, a novel symmetrical 7-level inverter is proposed, which has the fewest number of unidirectional switches with gate circuits, providing the lowest switching losses, conduction losses, total harmonic distortion and higher efficiency than conventional topology. The novelty of the proposed work consists of a novel modular inverter structure for photovoltaic energy system and electric vehicle applications with fewer numbers of switches and compact in size. Purpose. The proposed system aims to reduce switch count, overall harmonic distortions, and power loss. There are no passive filters required, and the constituted optimizes power quality by producing distortion-free sinusoidal output voltage as the level count increases while reducing power losses. Methods. The proposed topology is implemented with MATLAB/Simulink, using gating pulses and various pulse-width modulation methodologies. Moreover, the proposed model also has been validated and compared to the hardware system. Results. Total harmonic distortion, number of power switches, output voltage, current, power losses and number of DC sources are investigated with conventional topology. Practical value. The proposed topology has proven to be extremely beneficial for implementing photovoltaic-based stand-alone multilevel inverter and electric vehicle charging applications.

Related Organizations
Keywords

pulse-width modulation, switching loss, широтно-імпульсна модуляція, multilevel inverter, conduction loss, втрати провідності, total harmonic distortion, Electrical engineering. Electronics. Nuclear engineering, комутаційні втрати, багаторівневий інвертор, сумарні гармонічні спотворення, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 7
    download downloads 10
  • 7
    views
    10
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
15
Top 10%
Top 10%
Top 10%
7
10
Green
gold
Related to Research communities