Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Photonics Techn...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Photonics Technology Letters
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY NC ND
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neural Architecture Search Generated Phase Retrieval Net for Real-Time Off-Axis Quantitative Phase Imaging

Authors: Xin Shu; Mengxuan Niu; Yi Zhang; Wei Luo; Renjie Zhou;

Neural Architecture Search Generated Phase Retrieval Net for Real-Time Off-Axis Quantitative Phase Imaging

Abstract

In off-axis Quantitative Phase Imaging (QPI), artificial neural networks have been recently applied for phase retrieval with aberration compensation and phase unwrapping. However, the involved neural network architectures are largely unoptimized and inefficient with low inference speed, which hinders the realization of real-time imaging. Here, we propose a Neural Architecture Search (NAS) generated Phase Retrieval Net (NAS-PRNet) for accurate and fast phase retrieval. NAS-PRNet is an encoder-decoder style neural network, automatically found from a large neural network architecture search space through NAS. By modifying the differentiable NAS scheme from SparseMask, we learn the optimized skip connections through gradient descent. Specifically, we implement MobileNet-v2 as the encoder and define a synthesized loss that incorporates phase reconstruction loss and network sparsity loss. NAS-PRNet has achieved high-fidelity phase retrieval by achieving a peak Signal-to-Noise Ratio (PSNR) of 36.7 dB and a Structural SIMilarity (SSIM) of 86.6% as tested on interferograms of biological cells. Notably, NAS-PRNet achieves phase retrieval in only 31 ms, representing 15x speedup over the most recent Mamba-UNet with only a slightly lower phase retrieval accuracy.

Related Organizations
Keywords

Machine Learning, FOS: Computer and information sciences, Image and Video Processing (eess.IV), FOS: Electrical engineering, electronic engineering, information engineering, Image and Video Processing, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid