
pmid: 37522975
pmc: PMC11339103
AbstractCyclophosphamide has drastically enhanced the expectancy and quality of life of cancer patients. However, it is accompanied by diverse neurological complications which are considered a dose-limiting adverse effect. Neurotoxicity caused by cyclophosphamide can manifest in numerous manners including anxiety, depression, motor dysfunction and cognitive deficits. This review article offers an overview on cyclophosphamide-induced neurotoxicity, providing a unified point of view on the possible underlying molecular mechanisms including oxidative brain damage, neuroinflammation, apoptotic neuronal cell death as well as disruption of the balance of brain neurotransmitters and neurotrophic factors. Besides, this review sheds light on the promising protective agents that have been investigated using preclinical animal models as well as their biological targets and protection mechanisms. Despite promising results in experimental models, none of these agents has been studied in clinical trials. Thus, there is lack of evidence to advocate the use of any neuroprotective agent in the clinical setting. Furthermore, none of the protective agents has been evaluated for its effect on the anticancer activity of cyclophosphamide in tumor-bearing animals. Therefore, there is a great necessity for adequate well-designed clinical studies for evaluation of the therapeutic values of these candidates. Conclusively, this review summarizes the molecular mechanisms accounting for cyclophosphamide-induced neurotoxicity together with the potential protective strategies seeking for downgrading this neurological complication, thus enhancing the quality of life and well-being of cancer patients treated with cyclophosphamide. Graphical abstract
Pulmonary and Respiratory Medicine, Neuroimmune Interaction in Psychiatric Disorders, Critical Care and Intensive Care Medicine, Article, Neuropsychological Impact, Computational biology, Cognition, Health Sciences, Animals, Humans, Psychology, Chemotherapy, Cognitive Dysfunction, Management of Delirium in Critical Care Patients, Cyclophosphamide, Biology, Internal medicine, Biological Psychiatry, Pharmacology, Life Sciences, Neuroprotection, Mechanisms of Chemotherapy-Induced Cognitive Impairment, FOS: Psychology, Disease Models, Animal, Neuroprotective Agents, Cognitive impairment, Medicine, Neuroscience
Pulmonary and Respiratory Medicine, Neuroimmune Interaction in Psychiatric Disorders, Critical Care and Intensive Care Medicine, Article, Neuropsychological Impact, Computational biology, Cognition, Health Sciences, Animals, Humans, Psychology, Chemotherapy, Cognitive Dysfunction, Management of Delirium in Critical Care Patients, Cyclophosphamide, Biology, Internal medicine, Biological Psychiatry, Pharmacology, Life Sciences, Neuroprotection, Mechanisms of Chemotherapy-Induced Cognitive Impairment, FOS: Psychology, Disease Models, Animal, Neuroprotective Agents, Cognitive impairment, Medicine, Neuroscience
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
