Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Известия Алтайского ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structural Phase States and Surface Properties of Steel 45 after Electroexplosive Borocoppering and Electron-Beam Treatment

Authors: Viktor E. Gromov; L. P. Bashchenko; K.V. Aksenova; E. A. Budovskikh; E. S. Vashchuk;

Structural Phase States and Surface Properties of Steel 45 after Electroexplosive Borocoppering and Electron-Beam Treatment

Abstract

The paper concerns improving the microhardness and wear resistance of steel 45 by the combined treatment of electroexplosive borocoppering with the subsequent electron-beam treatment. It is found that surface roughness at the area of the electroexplosive treatment increases along with the absorbed power density and the mass of boron powder. The electron-beam treatment leads to a decrease of roughness and appearance of craters instead of radial melt flow traces. The depth structure of the electroexplosive alloying area with a thickness of 25 µm includes a coating layer, near-surface, intermediate, and boundary layers. The surface microhardness and the depth of the hardening zone after the electroexlosive alloying increase along with the absorbed power density and boron concentration and reach the values of 1400 HV The electron-beam treatment causes merging of the coating and the surface layers and increases the hardening zone depth up to 80 µm. A cellular or dendritic crystallization structure is formed near the surface, and a grain structure is formed in the depth. The inhomogeneous distribution of alloying elements over the volume of the alloying area and its adjustment during the electron-beam treatment are established. The inter-dendritic distances and grain diameters increase as the absorbed power density becomes higher with the increase of the electron-beam treatment exposure time. Also, the size of martensite needles increases in the depth. The combined treatment produces the sub microcrystalline strengthening phases-borides FeB, Fe2B, FeB2, carboboride Fe23 (C, B)6 , and carbide B4C. The microhardness level is reduced to 800 HV, and the wear resistance increases up to five times when compared to the wear resistance of the base.

Related Organizations
Keywords

element and phase composition, electroexplosive borocoppering, электронно-пучковая обработка, microhardness, electron-beam treatment, элементный и фазовый состав, микротвердость, электровзрывное боромеднение, износостойкость, wear resistance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold