Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Research on Dung Beetle Optimization Based Stacked Sparse Autoencoder for Network Situation Element Extraction

Authors: Yongchao Yang; Pan Zhao;

Research on Dung Beetle Optimization Based Stacked Sparse Autoencoder for Network Situation Element Extraction

Abstract

Network security situation awareness enables networks to actively and effectively defend against network attacks, relying on the extraction of network situation elements as an initial and decisive step. In existing studies, the stacked sparse autoencoder (SSAE) has been employed to extract features from unlabeled network flows. However, obtaining the optimal hyperparameter combination is challenging due to its numerous hyperparameters. To address this issue, we propose a novel approach named DBO-SSAE that leverages dung beetle optimization (DBO) to select the optimal hyperparameters for SSAE automatically. Applied to the well-known UNSW-NB15 dataset, our model yields an optimal feature subset, which is evaluated across various binary classifiers with different metrics. Experimental results demonstrate that our approach improves accuracy and $\textit{F}_{1}$ -measure by 0.2% to 1.5% while reducing the false negative rate (FNR) and false positive rate (FPR) by 0.06% to 7%, surpassing other feature extraction methods on the same classifier for the UNSW-NB15 dataset. Particularly, in conjunction with a lightweight bidirectional long short-term memory (BiLSTM), our model achieves metrics of 98.84% accuracy, 98.96% $\textit{F}_{1}$ -measure, 1.86% FNR, and 0.6% FPR. This study could provide novel insights into the effective representation of network situation elements and lay the groundwork for a high-efficiency intrusion detection system.

Related Organizations
Keywords

Dung beetle optimization, network security, stacked sparse autoencoder, Electrical engineering. Electronics. Nuclear engineering, network situation element extraction, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold