Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Complex System Modeling and Simulation
Article . 2021 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Scheduling Storage Process of Shuttle-Based Storage and Retrieval Systems Based on Reinforcement Learning

Authors: Luo, Lei; Zhao, Ning; Lodewijks, Gabriel;

Scheduling Storage Process of Shuttle-Based Storage and Retrieval Systems Based on Reinforcement Learning

Abstract

The Shuttle-Based Storage and Retrieval System (SBS/RS) has been widely studied because it is currently the most efficient automated warehousing system. Most of the related existing studies are focused on the prediction and improvement of the efficiency of such a system at the design stage. Hence, the control of existing SBS/RSs has been rarely investigated. In existing SBS/RSs, some empirical rules, such as storing loads column by column, are used to control or schedule the storage process. The question is whether or not the control of the storage process in an existing system can be improved further by using a different approach. The storage process is controlled to minimize the makespan of storing a series of loads into racks. Empirical storage rules are easy to control, but they do not reach the minimum makespan. In this study, the performance of a control system that uses reinforcement learning to schedule the storage process of an SBS/RS with fixed configurations is evaluated. Specifically, a reinforcement learning algorithm called the actor-critic algorithm is used. This algorithm is made up of two neural networks and is effective in making decisions and updating itself. It can also reduce the makespan relative to the existing empirical rules used to improve system performance. Experiment results show that in an SBS/RS comprising six columns and six tiers and featuring a storage capacity of 72 loads, the actor-critic algorithm can reduce the makespan by 6.67% relative to the column-by-column storage rule. The proposed algorithm also reduces the makespan by more than 30% when the number of loads being stored is in the range of 7-45, which is equal to 9.7%-62.5% of the systems’ storage capacity.

Related Organizations
Keywords

anzsrc-for: 4611 Machine Learning, reinforcement learning, 330, anzsrc-for: 46 Information and Computing Sciences, QA75.5-76.95, anzsrc-for: 4602 Artificial Intelligence, 004, Systems engineering, TA168, 46 Information and Computing Sciences, 4602 Artificial Intelligence, shuttle-based storage and retrieval system (sbs/rs), Electronic computers. Computer science, 4611 Machine Learning, 7 Affordable and Clean Energy, scheduling

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
gold