Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecology
Article . 2024
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
NIOZ Repository
Article . 2024
Data sources: NIOZ Repository
Ecology
Article . 2024
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of predation risk on parasite–host interactions and wildlife diseases

Authors: David W. Thieltges; Pieter T. J. Johnson; Anieke van Leeuwen; Janet Koprivnikar;

Effects of predation risk on parasite–host interactions and wildlife diseases

Abstract

AbstractLandscapes of fear can determine the dynamics of entire ecosystems. In response to perceived predation risk, prey can show physiological, behavioral, or morphological trait changes to avoid predation. This in turn can indirectly affect other species by modifying species interactions (e.g., altered feeding), with knock‐on effects, such as trophic cascades, on the wider ecosystem. While such indirect effects stemming from the fear of predation have received extensive attention for herbivore–plant and predator–prey interactions, much less is known about how they alter parasite–host interactions and wildlife diseases. In this synthesis, we present a conceptual framework for how predation risk—as perceived by organisms that serve as hosts—can affect parasite–host interactions, with implications for infectious disease dynamics. By basing our approach on recent conceptual advances with respect to predation risk effects, we aim to expand this general framework to include parasite–host interactions and diseases. We further identify pathways through which parasite–host interactions can be affected, for example, through altered parasite avoidance behavior or tolerance of hosts to infections, and discuss the wider relevance of predation risk for parasite and host populations, including heuristic projections to population‐level dynamics. Finally, we highlight the current unknowns, specifically the quantitative links from individual‐level processes to population dynamics and community structure, and emphasize approaches to address these knowledge gaps.

Keywords

Food Chain, ecology of fear, parasitism, Animals, Wild, trait-mediated indirect effects, Models, Biological, Host-Parasite Interactions, predation risk, Predatory Behavior, Animals, nonconsumptive effects

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
hybrid