
Parameterized Inapproximability Hypothesis (PIH) is a central question in the field of parameterized complexity. PIH asserts that given as input a 2-CSP on $k$ variables and alphabet size $n$, it is W[1]-hard parameterized by $k$ to distinguish if the input is perfectly satisfiable or if every assignment to the input violates 1% of the constraints. An important implication of PIH is that it yields the tight parameterized inapproximability of the $k$-maxcoverage problem. In the $k$-maxcoverage problem, we are given as input a set system, a threshold $τ>0$, and a parameter $k$ and the goal is to determine if there exist $k$ sets in the input whose union is at least $τ$ fraction of the entire universe. PIH is known to imply that it is W[1]-hard parameterized by $k$ to distinguish if there are $k$ input sets whose union is at least $τ$ fraction of the universe or if the union of every $k$ input sets is not much larger than $τ\cdot (1-\frac{1}{e})$ fraction of the universe. In this work we present a gap preserving FPT reduction (in the reverse direction) from the $k$-maxcoverage problem to the aforementioned 2-CSP problem, thus showing that the assertion that approximating the $k$-maxcoverage problem to some constant factor is W[1]-hard implies PIH. In addition, we present a gap preserving FPT reduction from the $k$-median problem (in general metrics) to the $k$-maxcoverage problem, further highlighting the power of gap preserving FPT reductions over classical gap preserving polynomial time reductions.
k-median, FOS: Computer and information sciences, Parameterized complexity, Computer Science - Computational Complexity, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Computational Complexity (cs.CC), Parameterized Inapproximability Hypothesis, max coverage, 004, Hardness of Approximation, ddc: ddc:004
k-median, FOS: Computer and information sciences, Parameterized complexity, Computer Science - Computational Complexity, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Computational Complexity (cs.CC), Parameterized Inapproximability Hypothesis, max coverage, 004, Hardness of Approximation, ddc: ddc:004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
