Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Algorithmica
Article . 2025 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Equivalence of Parameterized Inapproximability of k-Median, k-Max-Coverage, and 2-CSP

Authors: Karthik C. S.; Lee, Euiwoong; Manurangsi, Pasin;

On Equivalence of Parameterized Inapproximability of k-Median, k-Max-Coverage, and 2-CSP

Abstract

Parameterized Inapproximability Hypothesis (PIH) is a central question in the field of parameterized complexity. PIH asserts that given as input a 2-CSP on $k$ variables and alphabet size $n$, it is W[1]-hard parameterized by $k$ to distinguish if the input is perfectly satisfiable or if every assignment to the input violates 1% of the constraints. An important implication of PIH is that it yields the tight parameterized inapproximability of the $k$-maxcoverage problem. In the $k$-maxcoverage problem, we are given as input a set system, a threshold $τ>0$, and a parameter $k$ and the goal is to determine if there exist $k$ sets in the input whose union is at least $τ$ fraction of the entire universe. PIH is known to imply that it is W[1]-hard parameterized by $k$ to distinguish if there are $k$ input sets whose union is at least $τ$ fraction of the universe or if the union of every $k$ input sets is not much larger than $τ\cdot (1-\frac{1}{e})$ fraction of the universe. In this work we present a gap preserving FPT reduction (in the reverse direction) from the $k$-maxcoverage problem to the aforementioned 2-CSP problem, thus showing that the assertion that approximating the $k$-maxcoverage problem to some constant factor is W[1]-hard implies PIH. In addition, we present a gap preserving FPT reduction from the $k$-median problem (in general metrics) to the $k$-maxcoverage problem, further highlighting the power of gap preserving FPT reductions over classical gap preserving polynomial time reductions.

Keywords

k-median, FOS: Computer and information sciences, Parameterized complexity, Computer Science - Computational Complexity, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Computational Complexity (cs.CC), Parameterized Inapproximability Hypothesis, max coverage, 004, Hardness of Approximation, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green