Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Cognitive Computing in Engineering
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Research on Collaborative Optimization Strategy of Railway Signal Nonlinear Control System Based on BBO Algorithm and Multi-objective Optimization

Authors: Xue Li; Yixuan Yang; Zheng Li; Hui He;

Research on Collaborative Optimization Strategy of Railway Signal Nonlinear Control System Based on BBO Algorithm and Multi-objective Optimization

Abstract

This study focuses on exploring collaborative optimization strategies for a nonlinear control system of railway signals based on the BBO algorithm. Currently, the railway signal control system faces performance bottlenecks such as response lag and local optima due to parameter coupling when dealing with multi-objective optimization problems like train operating speed and signal delays. Traditional optimization methods struggle to achieve global collaborative regulation under complex operating conditions. Therefore, there is an urgent need to introduce efficient intelligent algorithms to enhance the system's real-time capabilities and reliability. The research constructs a mathematical model with multiple objective constraints, accurately identifies the adaptation shortcomings of the existing system in dynamic scenarios, and then employs a Biogeography-Based Optimization (BBO) algorithm for global optimization of control parameters. Specifically, it sets a population size of 50, a maximum number of iterations of 200, a migration rate dynamically adjusted between 0.6-0.9, and an adaptive mutation rate of 0.01-0.05, using root mean square error and response time as performance evaluation metrics for parameter optimization. Experimental data show that compared to traditional methods, this strategy can increase the average operating speed of trains by 15%, reduce signal delays by 20%, and improve system robustness indicators by 18.5%, achieving a collaborative enhancement of efficiency and safety while ensuring stable operation, thus providing an engineering-valued solution for the intelligent upgrade of railway transport.

Keywords

Multi-objective optimization, Railway signal, Electronic computers. Computer science, Science, Q, System collaborative optimization, QA75.5-76.95, Biogeography-Based Optimization (BBO) Algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold