
We describe a new class of Boolean functions which provide the presently best known trade-off between low computational complexity, nonlinearity and (fast) algebraic immunity. In particular, for $n\leq 20$, we show that there are functions in the family achieving a combination of nonlinearity and (fast) algebraic immunity which is superior to what is achieved by any other efficiently implementable function. The main novelty of our approach is to apply a judicious combination of simple integer and binary field arithmetic to Boolean function construction.
A major revision
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
