Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Computers
Article . 2016 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Near-Optimal One-Sided Scheduling for Coded Segmented Network Coding

Authors: Tang, Bin; Yang, Shenghao; Ye, Baoliu; Guo, Song; Lu, Sanglu;

Near-Optimal One-Sided Scheduling for Coded Segmented Network Coding

Abstract

As a variation of random linear network coding, segmented network coding (SNC) has attracted great interest in data dissemination over lossy networks due to its low computational cost. In order to guarantee the success of decoding, SNC can adopt a feedbackless forward error correction (FEC) approach by applying a linear block code to the input packets before segmentation at the source node. In particular, if the empirical rank distribution of transfer matrices of segments is known in advance, several classes of coded SNC can achieve close-to-optimal decoding performance. However, the empirical rank distribution in the absence of feedback has been little investigated yet, making the whole performance of the FEC approach unknown. To close this gap, in this paper, we present the first comprehensive study on the transmission scheduling issue for the FEC approach, aiming at optimizing the rank distribution of transfer matrices with little control overhead. We propose an efficient adaptive scheduling framework for coded SNC in lossy unicast networks. This framework is one-sided (i.e., each network node forwards the segments adaptively only according to its own state) and scalable (i.e., its buffer cost will not keep on growing when the number of input packets goes to infinity). The performance of the framework is further optimized based on a linear programming approach. Extensive numerical results show that our framework performs near-optimally with respect to the empirical rank distribution.

Related Organizations
Keywords

Random linear network coding, Forward error correction, Segmented network coding, Scheduling strategy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!