Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Clinical Ophthalmolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical Ophthalmology
Article . 2025 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development and Evaluation of a Deep Learning Algorithm to Differentiate Between Membranes Attached to the Optic Disc on Ultrasonography

Authors: Vaidehi Bhatt; Nikhil Shah; Deepak Bhatt; Supriya Dabir; Jay Sheth; Tos TJM Berendschot; Roel Erckens; +1 Authors

Development and Evaluation of a Deep Learning Algorithm to Differentiate Between Membranes Attached to the Optic Disc on Ultrasonography

Abstract

The purpose of this study was to create and test a deep learning algorithm that could identify and distinguish between membranes attached to optic disc [OD; retinal detachment (RD)/posterior vitreous detachment (PVD)] based on ocular ultrasonography (USG).We obtained a database of B-scan ultrasonography from a high-volume imaging center. A transformer-based Vision Transformer (ViT) model was employed, pre-trained on ImageNet21K, to classify ultrasound B-scan images into healthy, RD, and PVD. Images were pre-processed using Hugging Face's AutoImage Processor for standardization. Labels were mapped to numerical values, and the dataset was split into training and validation (505 samples), and testing (212 samples) subsets to evaluate model performance. Alternate methods, such as ensemble strategies and object detection pipelines, were explored but showed limited improvement in classification accuracy.The AI model demonstrated high classification performance, achieving an accuracy of 98.21% for PVD, 97.22% for RD, and 95.83% for normal cases. Sensitivity was 98.21% for PVD, 96.55% for RD, and 92.86% for normal cases, while specificity reached 95.16%, 100%, and 95.42%, respectively. Despite the overall strong performance, some misclassification occurred, with seven instances of RD being incorrectly labeled as PVD.We developed a transformer-based deep learning algorithm for ocular ultrasonography that accurately identifies membranes attached to the optic disc, distinguishing between RD (97.22% accuracy) and PVD (98.21% accuracy). Despite seven misclassifications, our model demonstrates robust performance and enhances diagnostic efficiency in high-volume imaging settings, thereby facilitating timely referrals and ultimately improving patient outcomes in urgent care scenarios. Overall, this promising innovation shows potential for clinical adoption.

Related Organizations
Keywords

retinal detachment, POSTERIOR VITREOUS DETACHMENT, posterior vitreous detachment, ultrasonography, artificial intelligence, deep learning algorithm, Original Research

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold