Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Microfluidics and Na...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Microfluidics and Nanofluidics
Article . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2016
Data sources: IRIS Cnr
CNR ExploRA
Article . 2016
Data sources: CNR ExploRA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coupled RapidCell and lattice Boltzmann models to simulate hydrodynamics of bacterial transport in response to chemoattractant gradients in confined domains

Authors: Hoa Nguyen; Basagaoglu Hakan; McKay Cameron; Carpenter Alexander J; Succi Sauro; Healy Frank;

Coupled RapidCell and lattice Boltzmann models to simulate hydrodynamics of bacterial transport in response to chemoattractant gradients in confined domains

Abstract

The RapidCell (RC) model was originally developed to simulate flagellar bacterial chemotaxis in environments with spatiotemporally varying chemoattractant gradients. RC is best suited for motility simulations in unbounded nonfluid environments; this limits its use in biomedical applications hinging on bacteria-fluid dynamics in microchannels. In this study, we eliminated this constraint by coupling the RC model with the colloidal lattice Boltzmann (LB) model. RC-LB coupling was accomplished by tracking positions of chemoreceptors on particle surfaces that vary with particles' angular and translational velocities, and by including forces and torques due to particles' tumbling and running motions in particle force-and torque-balance equations. The coupled model successfully simulated trajectories of particles in initially stagnant fluids in bounded domains, involving a chemoattractant contained in a confined zone with a narrow inlet or concentric multiringed inline obstacles, mimicking tumor vasculature geometry. Chemotactically successful particles exhibited higher attractant concentrations near the receptor clusters, transient increases in the motor bias, and transient fluctuations in methylated proteins at the cell scale, while exhibiting more frequent higher particle translation velocities and smaller angular velocities than chemotactically unsuccessful particles at the particle scale. In these simulations, the chemotactic particles reached the chemoattractant with the success rates of 20-72 %, whereas nonchemotactic particles would be unsuccessful. The coupled RC-LB model is the first step toward development of a multiscale simulation tool that bridges cell-scale signal and adaptation dynamics with particle-scale fluid-particle dynamics to simulate chemotaxis-driven bacterial motility in microchannel networks, typically observed in tumor vasculatures, in the context of targeted drug delivery.

Keywords

hydrostatics, Chemotaxis, Hydrodynamics, Computational methods in fluid dynamics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!