Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Surgical Endoscopyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Surgical Endoscopy
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Explainable artificial intelligence prediction-based model in laparoscopic liver surgery for segments 7 and 8: an international multicenter study

Authors: Victor Lopez-Lopez; Zeniche Morise; Mariano Albaladejo-González; Concepción Gomez Gavara; Brian K. P. Goh; Ye Xin Koh; Sijberden Jasper Paul; +31 Authors

Explainable artificial intelligence prediction-based model in laparoscopic liver surgery for segments 7 and 8: an international multicenter study

Abstract

Abstract Background Artificial intelligence (AI) is becoming more useful as a decision-making and outcomes predictor tool. We have developed AI models to predict surgical complexity and the postoperative course in laparoscopic liver surgery for segments 7 and 8. Methods We included patients with lesions located in segments 7 and 8 operated by minimally invasive liver surgery from an international multi-institutional database. We have employed AI models to predict surgical complexity and postoperative outcomes. Furthermore, we have applied SHapley Additive exPlanations (SHAP) to make the AI models interpretable. Finally, we analyzed the surgeries not converted to open versus those converted to open. Results Overall, 585 patients and 22 variables were included. Multi-layer Perceptron (MLP) showed the highest performance for predicting surgery complexity and Random Forest (RF) for predicting postoperative outcomes. SHAP detected that MLP and RF gave the highest relevance to the variables “resection type” and “largest tumor size” for predicting surgery complexity and postoperative outcomes. In addition, we explored between surgeries converted to open and non-converted, finding statistically significant differences in the variables “tumor location,” “blood loss,” “complications,” and “operation time.” Conclusion We have observed how the application of SHAP allows us to understand the predictions of AI models in surgical complexity and the postoperative outcomes of laparoscopic liver surgery in segments 7 and 8.

Keywords

Male, Adult, DISEASES::Neoplasms::Neoplasms by Site::Digestive System Neoplasms::Liver Neoplasms, Operative Time, Fetge - Càncer - Cirurgia, FENÓMENOS Y PROCESOS::conceptos matemáticos::algoritmos::inteligencia artificial, Cirurgia laparoscòpica, ENFERMEDADES::neoplasias::neoplasias por localización::neoplasias del sistema digestivo::neoplasias hepáticas, Article, TÉCNICAS Y EQUIPOS ANALÍTICOS, DIAGNÓSTICOS Y TERAPÉUTICOS::intervenciones quirúrgicas::procedimientos quirúrgicos mínimamente invasivos::endoscopia::laparoscopia, Postoperative Complications, Artificial Intelligence, Humans, Hepatectomy, Other subheadings::Other subheadings::Other subheadings::/surgery, Aged, Otros calificadores::Otros calificadores::Otros calificadores::/cirugía, Intel·ligència artificial - Aplicacions a la medicina, ANALYTICAL, DIAGNOSTIC AND THERAPEUTIC TECHNIQUES, AND EQUIPMENT::Surgical Procedures, Operative::Minimally Invasive Surgical Procedures::Endoscopy::Laparoscopy, Liver Neoplasms, Middle Aged, PHENOMENA AND PROCESSES::Mathematical Concepts::Algorithms::Artificial Intelligence, Laparoscopy, Female

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
hybrid