Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pediatric Surgery In...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pediatric Surgery International
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dissecting the dynamics of cell death pathways in Hirschsprung’s disease: a comparative analysis of viable and non-viable cells under proinflammatory conditions

Authors: Li, Zhongwen; Hagens, Johanna; Philippi, Clara; Schmidt, Hans Christian; Rohwäder, Lucie; Schuppert, Pauline; Pagerols Raluy, Laia; +3 Authors

Dissecting the dynamics of cell death pathways in Hirschsprung’s disease: a comparative analysis of viable and non-viable cells under proinflammatory conditions

Abstract

Abstract Purpose The present study explores the dynamics of cell death in Hirschsprung’s disease (HSCR) and control (CO) groups under inflammatory stress conditions. Methods Using flow cytometry, we analyzed intestinal colonic organoid cultures derived from the ganglionic segment of the HSCR and CO groups. Our analysis focused on the quantification of RIPK1-independent and RIPK1-dependent apoptosis, as well as necroptosis in both viable and non-viable cells under acute and chronic inflammatory stress. Results Our findings indicate that HSCR cells are particularly vulnerable to inflammation during acute proinflammatory stress, as evidenced by an increase in dead cells (Zombie +). Under chronic conditions, adaptive changes are observed in both HSCR and CO groups, indicating survival mechanisms. These adaptations are uniquely altered in HSCR, suggesting an impaired response to chronic inflammation. HSCR cells show significantly decreased RIPK1-dependent apoptosis in acute scenarios compared to chronic ones, unlike the CO group, implying varied responses to different inflammatory stresses. In non-viable cells, considerable changes in RIPK1-dependent apoptosis under chronic conditions in HSCR indicate a heightened inflammatory response compared to CO. Conclusion This research provides insights into cell death regulation in HSCR under inflammatory stress by using patient-derived organoids, underscoring the complexity of its inflammatory response.

Keywords

Inflammation, Male, Cell Death, Colon, Female [MeSH] ; Organoids [MeSH] ; RIP3–caspase-3 assay ; Humans [MeSH] ; Cell Death/physiology [MeSH] ; Inflammation [MeSH] ; Apoptosis/physiology [MeSH] ; Apoptosis ; Necroptosis/physiology [MeSH] ; Organoids ; Flow Cytometry/methods [MeSH] ; Colon/pathology [MeSH] ; Original Article ; Infant [MeSH] ; Male [MeSH] ; RIK1 ; Receptor-Interacting Protein Serine-Threonine Kinases/metabolism [MeSH] ; Hirschsprung’s disease ; Hirschsprung Disease/pathology [MeSH] ; Necroptosis ; Hirschsprung Disease/metabolism [MeSH], Infant, Apoptosis, Flow Cytometry, Organoids, Receptor-Interacting Protein Serine-Threonine Kinases, Necroptosis, Humans, Original Article, Female, Hirschsprung Disease

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid