Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital library (rep...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Russian Journal of Nondestructive Testing
Article . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
Дефектоскопия
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nondestructive Testing of an Aluminum Alloy Welded Joint Based on a Mathematical Model of the Thermal Welding Process and Computer Microtomography

Authors: Syryamkin, Vladimir I.; Khilchuk, Maria D.; Klestov, S. A.;

Nondestructive Testing of an Aluminum Alloy Welded Joint Based on a Mathematical Model of the Thermal Welding Process and Computer Microtomography

Abstract

Strength control of welded joints is used in many industries. X-ray microtomography as a method of non-destructive testing allows not only to detect the presence of defects, but also to classify them and assess the size of cracks and non-crack-like defects (pores). This article discusses the non-destructive testing of welded joints of aluminum alloy 6061 T6 using computer micrototomography and a mathematical model of the thermal welding process implemented in ANSYS Workbench. Experimental results of the X-ray microtomograph are presented, and the size of defects in this sample is estimated. The mathematical model allowed us to obtain the thermal histories at which the faults were formed.

Keywords

дефектоскопия, неразрушающий контроль, сварные швы, рентгеновские 3D микротомографы, математическое моделирование

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Beta
sdg_colorsSDGs:
Related to Research communities