Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Complex & Intelligen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Complex & Intelligent Systems
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Complex & Intelligent Systems
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A hybrid neural combinatorial optimization framework assisted by automated algorithm design

Authors: Liang Ma; Xingxing Hao; Wei Zhou; Qianbao He; Ruibang Zhang; Li Chen;

A hybrid neural combinatorial optimization framework assisted by automated algorithm design

Abstract

Abstract In recent years, the application of Neural Combinatorial Optimization (NCO) techniques in Combinatorial Optimization (CO) has emerged as a popular and promising research direction. Currently, there are mainly two types of NCO, namely, the Constructive Neural Combinatorial Optimization (CNCO) and the Perturbative Neural Combinatorial Optimization (PNCO). The CNCO generally trains an encoder-decoder model via supervised learning to construct solutions from scratch. It exhibits high speed in construction process, however, it lacks the ability for sustained optimization due to the one-shot mapping, which bounds its potential for application. Instead, the PNCO generally trains neural network models via deep reinforcement learning (DRL) to intelligently select appropriate human-designed heuristics to improve existing solutions. It can achieve high-quality solutions but at the cost of high computational demand. To leverage the strengths of both approaches, we propose to hybrid the CNCO and PNCO by designing a hybrid framework comprising two stages, in which the CNCO is the first stage and the PNCO is the second. Specifically, in the first stage, we utilize the attention model to generate preliminary solutions for given CO instances. In the second stage, we employ DRL to intelligently select and combine appropriate algorithmic components from improvement pool, perturbation pool, and prediction pool to continuously optimize the obtained solutions. Experimental results on synthetic and real Capacitated Vehicle Routing Problems (CVRPs) and Traveling Salesman Problems(TSPs) demonstrate the effectiveness of the proposed hybrid framework with the assistance of automated algorithm design.

Related Organizations
Keywords

Transformer, Electronic computers. Computer science, Reinforcement learning, QA75.5-76.95, Information technology, T58.5-58.64, Neural combinatorial optimization, Automated algorithm design

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold