Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://repository.t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
TU Delft Repository
Conference object . 2019
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Statistical Significance Testing in Information Retrieval

An Empirical Analysis of Type I, Type II and Type III Errors
Authors: Urbano, Julián (author); De Lima, H.A. (author); Hanjalic, A. (author);

Statistical Significance Testing in Information Retrieval

Abstract

Statistical significance testing is widely accepted as a means to assess how well a difference in effectiveness reflects an actual difference between systems, as opposed to random noise because of the selection of topics. According to recent surveys on SIGIR, CIKM, ECIR and TOIS papers, the t-test is the most popular choice among IR researchers. However, previous work has suggested computer intensive tests like the bootstrap or the permutation test, based mainly on theoretical arguments. On empirical grounds, others have suggested non-parametric alternatives such as the Wilcoxon test. Indeed, the question of which tests we should use has accompanied IR and related fields for decades now. Previous theoretical studies on this matter were limited in that we know that test assumptions are not met in IR experiments, and empirical studies were limited in that we do not have the necessary control over the null hypotheses to compute actual Type I and Type II error rates under realistic conditions. Therefore, not only is it unclear which test to use, but also how much trust we should put in them. In contrast to past studies, in this paper we employ a recent simulation methodology from TREC data to go around these limitations. Our study comprises over 500 million p-values computed for a range of tests, systems, effectiveness measures, topic set sizes and effect sizes, and for both the 2-tail and 1-tail cases. Having such a large supply of IR evaluation data with full knowledge of the null hypotheses, we are finally in a position to evaluate how well statistical significance tests really behave with IR data, and make sound recommendations for practitioners.

10 pages, 6 figures, SIGIR 2019

Related Organizations
Keywords

FOS: Computer and information sciences, Statistical significance,, Computer Science - Machine Learning, Sign test, Student’s t-test, Permutation, Wilcoxon test, Computer Science - Digital Libraries, Statistics - Applications, Bootstrap, Computer Science - Information Retrieval, Machine Learning (cs.LG), Type I and Type II errors, Digital Libraries (cs.DL), Applications (stat.AP), Simulation, Information Retrieval (cs.IR)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 11
    download downloads 26
  • 11
    views
    26
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
50
Top 10%
Top 10%
Top 10%
11
26
Green