Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cardiovascular Diabe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cardiovascular Diabetology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cardiovascular Diabetology
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Is GFR decline induced by SGLT2 inhibitor of clinical importance?

Authors: Günes-Altan, Merve; Bosch, Agnes; Striepe, Kristina; Bramlage, Peter; Schiffer, Mario; Schmieder, Roland E.; Kannenkeril, Dennis;

Is GFR decline induced by SGLT2 inhibitor of clinical importance?

Abstract

Abstract Background Use of sodium-glucose-cotransporter-2 (SGLT2) inhibitors often causes an initial decline in glomerular filtration rate (GFR). This study addresses the question whether the initial decline of renal function with SGLT2 inhibitor treatment is related to vascular changes in the systemic circulation. Methods We measured GFR (mGFR) and estimated GFR (eGFR) in 65 patients with type 2 diabetes (T2D) at baseline and after 12 weeks of treatment randomized either to a combination of empagliflozin and linagliptin (SGLT2 inhibitor based treatment group) (n = 34) or metformin and insulin (non-SGLT2 inhibitor based treatment group) (n = 31). mGFR was measured using the gold standard clearance technique by constant infusion of inulin. In addition to blood pressure (BP), we measured pulse wave velocity (PWV) under standardized conditions reflecting vascular compliance of large arteries, as PWV is considered to be one of the most reliable vascular parameter of cardiovascular (CV) prognosis. Results Both mGFR and eGFR decreased significantly after initiating treatment, but no correlation was found between change in mGFR and change in eGFR in either treatment group (SGLT2 inhibitor based treatment group: r=-0.148, p = 0.404; non-SGLT2 inhibitor based treatment group: r = 0.138, p = 0.460). Noticeably, change in mGFR correlated with change in PWV (r = 0.476, p = 0.005) in the SGLT2 inhibitor based treatment group only and remained significant after adjustment for the change in systolic BP and the change in heart rate (r = 0.422, p = 0.018). No such correlation was observed between the change in eGFR and the change in PWV in either treatment group. Conclusions Our main finding is that after initiating a SGLT2 inhibitor based therapy an exaggerated decline in mGFR was related with improved vascular compliance of large arteries reflecting the pharmacologic effects of SGLT2 inhibitor in the renal and systemic vascular bed. Second, in a single patient with T2D, eGFR may not be an appropriate parameter to assess the true change of renal function after receiving SGLT2 inhibitor based therapy. Trial registration clinicaltrials.gov (NCT02752113).

Keywords

Male, Time Factors, Linagliptin, Pulse Wave Analysis, Kidney, Vascular Stiffness, Glucosides, Diseases of the circulatory (Cardiovascular) system, Humans, Insulin, Diabetic Nephropathies, Benzhydryl Compounds, Sodium-Glucose Transporter 2 Inhibitors, Aged, PWV, Research, Middle Aged, Metformin, Treatment Outcome, Diabetes Mellitus, Type 2, RC666-701, GFR decline, Female, Drug Therapy, Combination, Benzhydryl Compounds/therapeutic use [MeSH] ; Kidney/drug effects [MeSH] ; Sodium-Glucose Transporter 2 Inhibitors/therapeutic use [MeSH] ; Aged [MeSH] ; Diabetic Nephropathies/diagnosis [MeSH] ; Diabetes Mellitus, Type 2/physiopathology [MeSH] ; Sodium-Glucose Transporter 2 [MeSH] ; Diabetes Mellitus, Type 2/drug therapy [MeSH] ; Metformin/therapeutic use [MeSH] ; Kidney/physiopathology [MeSH] ; Hypoglycemic Agents/adverse effects [MeSH] ; Male [MeSH] ; Hypoglycemic Agents/therapeutic use [MeSH] ; GFR decline ; Glucosides/adverse effects [MeSH] ; Clinical Relevance [MeSH] ; Drug Therapy, Combination [MeSH] ; SGLT2 inhibitors ; Glomerular Filtration Rate/drug effects [MeSH] ; Sodium-Glucose Transporter 2 Inhibitors/adverse effects [MeSH] ; Diabetes Mellitus, Type 2/diagnosis [MeSH] ; Female [MeSH] ; Linagliptin/therapeutic use [MeSH] ; Benzhydryl Compounds/adverse effects [MeSH] ; Biomarkers/blood [MeSH] ; Humans [MeSH] ; Insulin [MeSH] ; Linagliptin/adverse effects [MeSH] ; Treatment Outcome [MeSH] ; Middle Aged [MeSH] ; Time Factors [MeSH] ; Diabetic Nephropathies/physiopathology [MeSH] ; PWV ; Glucosides/therapeutic use [MeSH] ; Research ; Diabetic Nephropathies/drug therapy [MeSH] ; Pulse Wave Analysis [MeSH] ; Vascular Stiffness/drug effects [MeSH], SGLT2 inhibitors, Glomerular Filtration Rate

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
gold