Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Neurologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Neurology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Neurology
Article . 2024
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Neurology
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Neurology
Article . 2024
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploring vascular contributions to cognitive impairment and dementia (ENIGMA): protocol for a prospective observational study

protocol for a prospective observational study
Authors: Vestergaard, Sigrid Breinholt; Damsbo, Andreas Gammelgaard; Pedersen, Niels Lech; Zachariassen, Katrine; Drasbek, Kim Ryun; Østergaard, Leif; Andersen, Grethe; +2 Authors

Exploring vascular contributions to cognitive impairment and dementia (ENIGMA): protocol for a prospective observational study

Abstract

Abstract Background Post-stroke cognitive impairment (PSCI) is common. However, the underlying pathophysiology remains largely unknown. Understanding the role of microvascular changes and finding markers that can predict PSCI, could be a first step towards better screening and management of PSCI. Capillary dysfunction is a pathological feature of cerebral small vessel disease and may play a role in the mechanisms underlying PSCI. Extracellular vesicles (EVs) are secreted from cells and may act as disease biomarkers. We aim to investigate the role of capillary dysfunction in PSCI and the associations between EV characteristics and cognitive function one year after acute ischemic stroke (AIS) and transient ischemic attack (TIA). Methods The ENIGMA study is a single-centre prospective clinical observational study conducted at Aarhus University Hospital, Denmark. Consecutive patients with AIS and TIA are included and followed for one year with follow-up visits at three and 12 months. An MRI is performed at 24 h and 12 months follow-up. EV characteristics will be characterised from blood samples drawn at 24 h and three months follow-up. Cognitive function is assessed three and 12 months after AIS and TIA using the Repeatable Battery for the Assessment of Neuropsychological Status. Discussion Using novel imaging and molecular biological techniques the ENIGMA study will provide new knowledge about the vascular contributions to cognitive decline and dementia. Trial registration The study is retrospectively registered as an ongoing observational study at ClinicalTrials.gov with the identifier NCT06257823.

Keywords

Ischemic stroke, Ischemic Attack, Cognitive Dysfunction/diagnosis, Plasma extracellular vesicles, Capillary dysfunction, Small vessel disease, Stroke, Study Protocol, Observational Studies as Topic, Cognition, Ischemic Attack, Transient, Humans, Transient/complications, Stroke/psychology, Cognitive Dysfunction, Dementia, Ischemic Attack, Transient/complications, Neurology. Diseases of the nervous system, Prospective Studies, RC346-429, Ischemic Stroke

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold