Powered by OpenAIRE graph
Found an issue? Give us feedback
Nutrition and Cancerarrow_drop_down
Nutrition and Cancer
Article . 2008 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HKU Scholars Hub
Article . 2012
Data sources: HKU Scholars Hub
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of a Prodrug of the Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate on the Growth of Androgen-Independent Prostate Cancer In Vivo

Authors: Chan, TH; Wang, X; Lee, SC; Wong, YC; Chan, WK; Lee, TW; Lam, WH;

Effect of a Prodrug of the Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate on the Growth of Androgen-Independent Prostate Cancer In Vivo

Abstract

Epigallocatechin-3-gallate (EGCG) is the major and most potent polyphenol compound of green tea that has been shown to have anticancer effects against various types of cancers. In this study, in addition to the EGCG compound, a synthetic derivative, the peracetate of EGCG (EGCG-P), was used to investigate the inhibitory effects on growth of androgen-independent prostate cancer in vivo. The advantage of EGCG-P is that it may act as a prodrug, leading to higher bioavailability than EGCG itself. The aim of our study was to compare the differences between EGCG and EGCG-P on their inhibitory effect on androgen-independent prostate cancer, CWR22R, xenograft model in nude mice. The mice were administrated daily with solvent dimethyl sulfoxide, EGCG, and EGCG-P separately through intraperitoneal injection for 20 days. Tumor volume and body weight of nude mice were recorded daily. Serum prostate-specific antigen (PSA) levels were also measured before and after the treatment. The effects of both EGCG and EGCG-P on tumor cell proliferation were assessed by immunohistochemical (IHC) method using antibodies against Ki-67 and proliferating cell nuclear antigen. The apoptotic effect was evaluated by IHC against B-cell non-Hodgkin lymphoma-2 and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay by in situ apoptosis detection kit. Moreover, the potential suppression of angiogenesis by EGCG and EGCG-P on prostate cancer was examined by IHC against CD31. Our results revealed that treatment of EGCG and EGCG-P compounds suppressed the growth of CWR22R xenografts without causing any detectable side effects in nude mice. The suppression of growth of the tumor was correlated with the decrease of serum PSA level together with the reduction in tumor angiogenesis and an increase in apoptosis on prostate cancer cells. The results showed that treatment of EGCG and EGCG-P inhibited tumor growth and angiogenesis while promoting apoptosis of the prostate cancer cells in vivo. Our results suggest that EGCG-P may be a more stable and useful compound for increasing the therapeutic anticancer effects in androgen-independent prostate cancer.

Related Organizations
Keywords

Acetates - Pharmacology, Male, Apoptosis - Drug Effects, Cell Division - Drug Effects, Nude, Transplantation, Heterologous, Pathologic - Drug Therapy, 610, Biological Availability, Mice, Nude, Apoptosis, Neovascularization, Pathologic - Drug Therapy, Acetates, Catechin, Mice, Proliferating Cell Nuclear Antigen, Animals, Humans, Tea - Chemistry, Prodrugs, Neovascularization, Proliferating Cell Nuclear Antigen - Analysis, Transplantation, Heterologous, Neovascularization, Pathologic, Tea, Prodrugs - Pharmacology, Prostatic Neoplasms, Prostate-Specific Antigen, Immunohistochemistry, Ki-67 Antigen, Catechin - Analogs & Derivatives - Pharmacokinetics - Pharmacology, Prostatic Neoplasms - Blood Supply - Pathology, Androgens, Ki-67 Antigen - Analysis, Androgens - Pharmacology, Cell Division, Neoplasm Transplantation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!