
pmid: 35239499
The main challenge for industrial predictive models is how to effectively deal with big data from high-dimensional processes with nonstationary characteristics. Although deep networks, such as the stacked autoencoder (SAE), can learn useful features from massive data with multilevel architecture, it is difficult to adapt them online to track fast time-varying process dynamics. To integrate feature learning and online adaptation, this article proposes a deep cascade gradient radial basis function (GRBF) network for online modeling and prediction of nonlinear and nonstationary processes. The proposed deep learning method consists of three modules. First, a preliminary prediction result is generated by a GRBF weak predictor, which is further combined with raw input data for feature extraction. By incorporating the prior weak prediction information, deep output-relevant features are extracted using a SAE. Online prediction is finally produced upon the extracted features with a GRBF predictor, whose weights and structure are updated online to capture fast time-varying process characteristics. Three real-world industrial case studies demonstrate that the proposed deep cascade GRBF network outperforms existing state-of-the-art online modeling approaches as well as deep networks, in terms of both online prediction accuracy and computational complexity.
Output-relevant features, Gradient radial basis function (GRBF) network, Data models, Adaptation models, Computational modeling, Deep learning, Radial basis function networks, Adaptive systems, 004, Predictive models, Online adaptation, High-dimensional and nonstationary processes, Stacked autoencoder (SAE), Feature extraction
Output-relevant features, Gradient radial basis function (GRBF) network, Data models, Adaptation models, Computational modeling, Deep learning, Radial basis function networks, Adaptive systems, 004, Predictive models, Online adaptation, High-dimensional and nonstationary processes, Stacked autoencoder (SAE), Feature extraction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
