Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ e-Prints Sotonarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Cybernetics
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Cascade Gradient RBF Networks With Output-Relevant Feature Extraction and Adaptation for Nonlinear and Nonstationary Processes

Authors: Tong Liu; Zeyue Tian; Sheng Chen; Kai Wang; Chris J. Harris;

Deep Cascade Gradient RBF Networks With Output-Relevant Feature Extraction and Adaptation for Nonlinear and Nonstationary Processes

Abstract

The main challenge for industrial predictive models is how to effectively deal with big data from high-dimensional processes with nonstationary characteristics. Although deep networks, such as the stacked autoencoder (SAE), can learn useful features from massive data with multilevel architecture, it is difficult to adapt them online to track fast time-varying process dynamics. To integrate feature learning and online adaptation, this article proposes a deep cascade gradient radial basis function (GRBF) network for online modeling and prediction of nonlinear and nonstationary processes. The proposed deep learning method consists of three modules. First, a preliminary prediction result is generated by a GRBF weak predictor, which is further combined with raw input data for feature extraction. By incorporating the prior weak prediction information, deep output-relevant features are extracted using a SAE. Online prediction is finally produced upon the extracted features with a GRBF predictor, whose weights and structure are updated online to capture fast time-varying process characteristics. Three real-world industrial case studies demonstrate that the proposed deep cascade GRBF network outperforms existing state-of-the-art online modeling approaches as well as deep networks, in terms of both online prediction accuracy and computational complexity.

Keywords

Output-relevant features, Gradient radial basis function (GRBF) network, Data models, Adaptation models, Computational modeling, Deep learning, Radial basis function networks, Adaptive systems, 004, Predictive models, Online adaptation, High-dimensional and nonstationary processes, Stacked autoencoder (SAE), Feature extraction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
bronze