
Kernel-based methods are heavily used in machine learning. However, they suffer from $O(N^2)$ complexity in the number $N$ of considered data points. In this paper, we propose an approximation procedure, which reduces this complexity to $O(N)$. Our approach is based on two ideas. First, we prove that any radial kernel with analytic basis function can be represented as sliced version of some one-dimensional kernel and derive an analytic formula for the one-dimensional counterpart. It turns out that the relation between one- and $d$-dimensional kernels is given by a generalized Riemann-Liouville fractional integral. Hence, we can reduce the $d$-dimensional kernel summation to a one-dimensional setting. Second, for solving these one-dimensional problems efficiently, we apply fast Fourier summations on non-equispaced data, a sorting algorithm or a combination of both. Due to its practical importance we pay special attention to the Gaussian kernel, where we show a dimension-independent error bound and represent its one-dimensional counterpart via a closed-form Fourier transform. We provide a run time comparison and error estimate of our fast kernel summations.
FOS: Computer and information sciences, Computer Science - Machine Learning, Numerical radial basis function approximation, slicing, Numerical Analysis (math.NA), Machine Learning (cs.LG), nonequispaced Fourier transforms, Algorithms for approximation of functions, fast kernel summation, FOS: Mathematics, Mathematics - Numerical Analysis, Numerical methods for discrete and fast Fourier transforms
FOS: Computer and information sciences, Computer Science - Machine Learning, Numerical radial basis function approximation, slicing, Numerical Analysis (math.NA), Machine Learning (cs.LG), nonequispaced Fourier transforms, Algorithms for approximation of functions, fast kernel summation, FOS: Mathematics, Mathematics - Numerical Analysis, Numerical methods for discrete and fast Fourier transforms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
