Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Acta Pharmacologica ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Pharmacologica Sinica
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
HKU Scholars Hub
Conference object . 2015
Data sources: HKU Scholars Hub
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nanomechanical analysis of insulinoma cells after glucose and capsaicin stimulation using atomic force microscopy

Authors: Ning Xi; King Wai Chiu Lai; Chen Geng Qu; Ruiguo Yang; Donna H. Wang; Bei Hua Zhong; Bei Hua Zhong; +1 Authors

Nanomechanical analysis of insulinoma cells after glucose and capsaicin stimulation using atomic force microscopy

Abstract

Glucose stimulates insulin secretion from pancreatic islet β cells by altering ion channel activity and membrane potential in the β cells. TRPV1 channel is expressed in the β cells and capsaicin induces insulin secretion similarly to glucose. This study aims to investigate the biophysical properties of the β cells upon stimulation of membrane channels using an atomic force microscopic (AFM) nanoindentation system.ATCC insulinoma cell line was used. Cell stiffness, a marker of reorganization of cell membrane and cytoskeleton due to ion channel activation, was measured in real time using an integrated AFM nanoindentation system. Cell height that represented structural changes was simultaneously recorded along with cell stiffness.After administration of glucose (16, 20 and 40 mmol/L), the cell stiffness was markedly increased in a dose-dependent manner, whereas cell height was changed in an opposite way. Lower concentrations of capsaicin (1.67 × 10(-9) and 1.67 × 10(-8) mol/L) increased the cell stiffness without altering cell height. In contrast, higher concentrations of capsaicin (1.67 × 10(-6) and 1.67 × 10(-7) mol/L) had no effect on the cell physical properties.A unique bio-nanomechanical signature was identified for characterizing biophysical properties of insulinoma cells upon general or specific activation of membrane channels. This study may deepen our understanding of stimulus-secretion coupling of pancreatic islet cells that leads to insulin secretion.

Related Organizations
Keywords

insulin secretion, cellular stiffness, Engineering Science and Materials, 610, TRPV Cation Channels, 612, cellular height, Microscopy, Atomic Force, AFM nanoindentation, capsaicin, Membrane Potentials, Cell Line, Tumor, Insulin-Secreting Cells, Animals, glucose, Cytoskeleton, Cell Size, Dose-Response Relationship, Drug, Mechanical Engineering, Cell Membrane, Nanoscience and Nanotechnology, Biomechanical Phenomena, Glucose, Mechanics of Materials, Other Engineering Science and Materials, Other Mechanical Engineering, Capsaicin

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
bronze