
Protection of biometric templates is a critical and urgent area of focus. IronMask demonstrates superior recognition performance while protecting facial templates against existing known attacks. In high-level, IronMask can be conceptualized as a fuzzy commitment scheme building on the hypersphere directly. We devise an attack on IronMask targeting on the security notion of renewability. Our attack, termed as Probabilistic Linear Regression Attack, utilizes the linearity of underlying used error correcting code. This attack is the first algorithm to successfully recover the original template when getting multiple protected templates in acceptable time and requirement of storage. We implement experiments on IronMask applied to protect ArcFace that well verify the validity of our attacks. Furthermore, we carry out experiments in noisy environments and confirm that our attacks are still applicable. Finally, we discuss two strategies to mitigate this type of attacks.
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Cryptography and Security (cs.CR)
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Cryptography and Security (cs.CR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
