Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5220/001352...
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantum Approximate Optimization Algorithm for Spatiotemporal Forecasting of HIV Clusters

Authors: Roosan, Don; Nirzhor, Saif; Khan, Rubayat; Hai, Fahmida; Haidar, Mohammad Rifat;

Quantum Approximate Optimization Algorithm for Spatiotemporal Forecasting of HIV Clusters

Abstract

HIV epidemiological data is increasingly complex, requiring advanced computation for accurate cluster detection and forecasting. We employed quantum-accelerated machine learning to analyze HIV prevalence at the ZIP-code level using AIDSVu and synthetic SDoH data for 2022. Our approach compared classical clustering (DBSCAN, HDBSCAN) with a quantum approximate optimization algorithm (QAOA), developed a hybrid quantum-classical neural network for HIV prevalence forecasting, and used quantum Bayesian networks to explore causal links between SDoH factors and HIV incidence. The QAOA-based method achieved 92% accuracy in cluster detection within 1.6 seconds, outperforming classical algorithms. Meanwhile, the hybrid quantum-classical neural network predicted HIV prevalence with 94% accuracy, surpassing a purely classical counterpart. Quantum Bayesian analysis identified housing instability as a key driver of HIV cluster emergence and expansion, with stigma exerting a geographically variable influence. These quantum-enhanced methods deliver greater precision and efficiency in HIV surveillance while illuminating critical causal pathways. This work can guide targeted interventions, optimize resource allocation for PrEP, and address structural inequities fueling HIV transmission.

Conference details can be found here: https://www.insticc.org/node/technicalprogram/DATA/2025

Keywords

Machine Learning, FOS: Computer and information sciences, Molecular Networks (q-bio.MN), FOS: Biological sciences, Molecular Networks, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green