Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2025
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2025
License: CC BY
Data sources: Apollo
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archive for Rational Mechanics and Analysis
Article . 2025 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hölder Regularity of the Pressure for Weak Solutions of the 3D Euler Equations in Bounded Domains

Hölder regularity of the pressure for weak solutions of the 3D Euler equations in bounded domains
Authors: Bardos, C; Boutros, DW; Titi, ES;

Hölder Regularity of the Pressure for Weak Solutions of the 3D Euler Equations in Bounded Domains

Abstract

We consider the three-dimensional incompressible Euler equations on a bounded domain $\Omega$ with $C^4$ boundary. We prove that if the velocity field $u \in C^{0,\alpha} (\Omega)$ with $\alpha > 0$ (where we are omitting the time dependence), it follows that the corresponding pressure $p$ of a weak solution to the Euler equations belongs to the Hölder space $C^{0, \alpha} (\Omega)$. We also prove that away from the boundary $p$ has $C^{0,2\alpha}$ regularity. In order to prove these results we use a local parametrisation of the boundary and a very weak formulation of the boundary condition for the pressure of the weak solution, as was introduced in [C. Bardos and E.S. Titi, Philos. Trans. Royal Soc. A, 380 (2022), 20210073], which is different than the commonly used boundary condition for classical solutions of the Euler equations. Moreover, we provide an explicit example illustrating the necessity of this new very weak formulation of the boundary condition for the pressure. Furthermore, we also provide a rigorous derivation of this new formulation of the boundary condition for weak solutions of the Euler equations. This result is of importance for the proof of the first half of the Onsager Conjecture, the sufficient conditions for energy conservation of weak solutions to the three-dimensional incompressible Euler equations in bounded domains. In particular, the results in this paper remove the need for separate regularity assumptions on the pressure in the proof of the Onsager conjecture.

Keywords

regularity, Smoothness and regularity of solutions to PDEs, 4901 Applied Mathematics, Analysis of PDEs, 4904 Pure Mathematics, weak solution, Euler equations, incompressible Euler equations, 35Q31 (primary), 35Q35, 76B03, 35J05, 35J08, 35J25, 35D30 (secondary), Existence, uniqueness, and regularity theory for incompressible inviscid fluids, FOS: Mathematics, 49 Mathematical Sciences, Weak solutions to PDEs, Analysis of PDEs (math.AP)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green