
En considérant l'énergie limitée des appareils de l'Internet des objets (IoT). Nous prenons l'allocation des ressources pour garantir la qualité de service (QoS) rigoureuse en fonction de l'optimisation conjointe du contrôle de puissance et de la longueur de bloc finie du canal. Pour atteindre de grands volumes de taux d'arrivée, nous proposons des réseaux d'adversaires génératifs basés sur la formation adversariale (AT-GAN), qui utilisent un nombre important d'événements extrêmes pour fournir une fiabilité élevée et ajuster les données réelles en temps réel. Les résultats de la simulation montrent que l'apprentissage par renforcement profond (Deep-RL) pour AT-GAN pourrait éliminer le temps d'entraînement transitoire. En conséquence, l'AT-GAN conserve une fiabilité supérieure à 99,9999 %.
Al considerar la energía limitada de los dispositivos de Internet de las cosas (IoT). Tomamos la asignación de recursos para garantizar la estricta Calidad de Servicio (QoS) en función de la optimización conjunta del control de potencia y la longitud de bloque finita del canal. Para lograr grandes volúmenes de tasas de llegada, proponemos Adversarial Training based Generative Adversarial Networks (AT-GANs), que utilizan un número significativo de eventos extremos para proporcionar una alta fiabilidad y ajustar los datos reales en tiempo real. Los resultados de la simulación muestran que Deep-Reforcement Learning (Deep-RL) para AT-GAN podría eliminar el tiempo de entrenamiento transitorio. Como resultado, la AT-GAN mantiene la fiabilidad por encima del 99,9999%.
By considering the limited energy of Internet of Things (IoT) devices. We take the resource allocation to guarantee the stringent Quality of Service (QoS) depending on the joint optimization of power control and finite blocklength of channel. To achieve large volumes of arrival rates, we propose Adversarial Training based Generative Adversarial Networks (AT-GANs), which utilize a significant number of extreme events to provide high reliability and adjust real data in real-time. Simulation results show that Deep- Reinforcement Learning (Deep-RL) for AT-GAN could eliminate the transient training time. As a result, the AT-GAN keeps the reliability higher than 99.9999%.
من خلال النظر في الطاقة المحدودة لأجهزة إنترنت الأشياء (IoT). نأخذ تخصيص الموارد لضمان الجودة الصارمة للخدمة (QoS) اعتمادًا على التحسين المشترك للتحكم في الطاقة وطول الكتلة المحدود للقناة. لتحقيق كميات كبيرة من معدلات الوصول، نقترح شبكات الخصومة التوليدية القائمة على التدريب التخاصمي (AT - GANs)، والتي تستخدم عددًا كبيرًا من الأحداث المتطرفة لتوفير موثوقية عالية وضبط البيانات الحقيقية في الوقت الفعلي. تظهر نتائج المحاكاة أن تعلم التعزيز العميق (Deep - RL) لـ AT - GAN يمكن أن يلغي وقت التدريب العابر. ونتيجة لذلك، يحافظ AT - GAN على الموثوقية أعلى من 99.9999 ٪.
Internet of things, Artificial intelligence, Generative adversarial networks, Device-to-Device Communication, Computer Networks and Communications, Biomedical Engineering, Wireless Body Area Networks in Healthcare, Information technology, FOS: Medical engineering, Quantum mechanics, Bandwidth (computing), Real-time computing, T Technology (General), Engineering, Quality of service, Sociology, Time allocation, Reinforcement learning, FOS: Electrical engineering, electronic engineering, information engineering, Electrical and Electronic Engineering, Resource allocation, Deep reinforcement learning, Computer network, Network packet, Machine Learning for Networking, Physics, Transmitter, Software-Defined Networking and Network Virtualization, Next Generation 5G Wireless Networks, Power (physics), T58.5-58.64, Social science, Computer science, Software-Defined Networking, Distributed computing, 004, FOS: Sociology, Reliability (semiconductor), Channel (broadcasting), Transmitter power output, Physical Sciences, Computer Science
Internet of things, Artificial intelligence, Generative adversarial networks, Device-to-Device Communication, Computer Networks and Communications, Biomedical Engineering, Wireless Body Area Networks in Healthcare, Information technology, FOS: Medical engineering, Quantum mechanics, Bandwidth (computing), Real-time computing, T Technology (General), Engineering, Quality of service, Sociology, Time allocation, Reinforcement learning, FOS: Electrical engineering, electronic engineering, information engineering, Electrical and Electronic Engineering, Resource allocation, Deep reinforcement learning, Computer network, Network packet, Machine Learning for Networking, Physics, Transmitter, Software-Defined Networking and Network Virtualization, Next Generation 5G Wireless Networks, Power (physics), T58.5-58.64, Social science, Computer science, Software-Defined Networking, Distributed computing, 004, FOS: Sociology, Reliability (semiconductor), Channel (broadcasting), Transmitter power output, Physical Sciences, Computer Science
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
