Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Hepatolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Hepatology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://dx.doi.org/10.1016/j.jh...
Article
License: Elsevier TDM
Data sources: Sygma
Journal of Hepatology
Article . 2024 . Peer-reviewed
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using liver stiffness to predict and monitor the risk of decompensation and mortality in patients with alcohol-related liver disease

Authors: Thorhauge, Katrine Holtz; Semmler, Georg; Johansen, Stine; Lindvig, Katrine Prier; Kjærgaard, Maria; Hansen, Johanne Kragh; Torp, Nikolaj; +10 Authors

Using liver stiffness to predict and monitor the risk of decompensation and mortality in patients with alcohol-related liver disease

Abstract

Liver stiffness measurement (LSM) is recommended for disease prognostication and monitoring. We evaluated if LSM, using transient elastography, and LSM changes predict decompensation and mortality in patients with alcohol-related liver disease (ALD).We performed an observational cohort study of compensated patients at risk of ALD from Denmark and Austria. We evaluated the risk of decompensation and all-cause mortality, stratified for compensated advanced chronic liver disease (cACLD: baseline LSM ≥10 kPa) and LSM changes after a median of 2 years. In patients with cACLD, we defined LSM changes as (A) LSM increase ≥20% ("cACLD increasers") and (B) follow-up LSM <10 kPa or <20 kPa with LSM decrease ≥20% ("cACLD decreasers"). In patients without cACLD, we defined follow-up LSM ≥10 kPa as an LSM increase ("No cACLD increasers"). The remaining patients were considered LSM stable.We followed 536 patients for 3,008 patient-years-median age 57 years (IQR 49-63), baseline LSM 8.1 kPa (IQR 4.9-21.7)-371 patients (69%) had follow-up LSM after a median of 25 months (IQR 17-38), 41 subsequently decompensated and 55 died. Of 125 with cACLD at baseline, 14% were "cACLD increasers" and 43% "cACLD decreasers", while 13% of patients without cACLD were "No cACLD increasers" (n = 33/246). Baseline LSM, follow-up LSM and LSM changes accurately predicted decompensation (C-index: baseline LSM 0.85; follow-up LSM 0.89; LSM changes 0.85) and mortality (C-index: baseline LSM 0.74; follow-up LSM 0.74; LSM changes 0.70). When compared to "cACLD decreasers", "cACLD increasers" had significantly lower decompensation-free survival and higher risks of decompensation (subdistribution hazard ratio 4.39, p = 0.004) and mortality (hazard ratio 3.22, p = 0.01).LSM by transient elastography predicts decompensation and all-cause mortality in patients with compensated ALD both at diagnosis and when used for monitoring.Patients at risk of alcohol-related liver disease (ALD) are at significant risk of progressive disease and adverse outcomes. Monitoring is essential for optimal disease surveillance and patient guidance, but non-invasive monitoring tools are lacking. In this study we demonstrate that liver stiffness measurement (LSM), using transient elastography, and LSM changes after a median of 2 years, can predict decompensation and all-cause mortality in patients at risk of ALD with and without compensated advanced chronic liver disease. These findings are in line with results from non-alcoholic fatty liver disease, hepatitis C and primary sclerosing cholangitis, and support the clinical utility of LSM, using transient elastography, for disease prognostication and monitoring in chronic liver diseases including ALD, as recommended by the Baveno VII.

Keywords

Male, Denmark, Elasticity Imaging Techniques/methods, Alcoholic/mortality, Cohort Studies, Predictive Value of Tests, Humans, Austria/epidemiology, Liver Diseases, Alcoholic, Liver Diseases, cACLD, Liver/diagnostic imaging, Middle Aged, Prognosis, transient elastography, Denmark/epidemiology, Fibroscan, Liver, ALD, Austria, Baveno VII, Elasticity Imaging Techniques, Female

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
hybrid