
doi: 10.2312/evs.20221101
Translation alignment plays a crucial role in various applications in natural language processing and digital humanities. With the recent advance in neural machine translation and contextualized language models, numerous studies have emerged on this topic, and several models and tools have been proposed. The performance of the proposed models has been always tested on standard benchmark data sets of different language pairs according to quantitative metrics such as Alignment Error Rate (AER) and F1. However, a detailed explanation on what alignment features contribute to these scores is missing. In order to allow analyzing the performance of alignment models, we present a visual analytics framework that aids researchers and developers in visualizing the output of their alignment models. We propose different visualization approaches that support assessing their own model's performance against alignment gold standards or in comparison to the performance of other models.
Tariq Yousef and Stefan Jänicke
Applications
CCS Concepts: Human-centered computing --> Visual analytics; Visualization design and evaluation methods; Computing methodologies --> Machine translation, Visual analytics, Human centered computing, Machine translation, Visualization design and evaluation methods, Computing methodologies
CCS Concepts: Human-centered computing --> Visual analytics; Visualization design and evaluation methods; Computing methodologies --> Machine translation, Visual analytics, Human centered computing, Machine translation, Visualization design and evaluation methods, Computing methodologies
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
