Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JOURNAL ONLINE OF PH...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JOURNAL ONLINE OF PHYSICS
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SISTEM BASIS DATA PEMANTAUAN PARAMETER AIR BERBASIS INTERNET OF THINGS (IoT) DENGAN PLATFORM THINGSPEAK

Authors: Ferdian Hutabarat, Benedika; Peslinof, Mardian; Afrianto, M. Ficky; Fendriani, Yoza;

SISTEM BASIS DATA PEMANTAUAN PARAMETER AIR BERBASIS INTERNET OF THINGS (IoT) DENGAN PLATFORM THINGSPEAK

Abstract

] This research aims to develop an Internet of Things (IoT)-based water parameter monitoring database system using the Thingspeak platform. This system is designed to monitor real-time water parameters such as temperature, water pH, and water turbidity. Sensors for monitoring these water parameters are installed on a Raspberry Pi microprocessor connected to the internet network. The data generated by the sensors and processed by the Raspberry Pi are then sent to the Thingspeak server. The database system developed in this research utilizes the features provided by the Thingspeak platform, such as data processing, visualization, and integration with other software. The data stored in the database can be accessed online through the dashboard provided by Thingspeak. The test results show that the IoT-based water parameter monitoring database system with the Thingspeak platform can function properly and provide accurate information on the monitored water conditions. The sensors installed on the water successfully sent data periodically to the Thingspeak platform every 10 seconds. The test results showed a deviation value of 0.9996 for the accuracy of the temperature parameter, where the accuracy value of the temperature varied from 96.30% to 100%. The average accuracy of the temperature measurement was 98.74%, and the average system error was 1.26%. The system accuracy test results range from 0.95 to 0.99. The testing was conducted on a laboratory scale, and in the future, this system can be developed for real-time water parameter monitoring over a longer period of time

Related Organizations
Keywords

Database System, Water Parameter Sensors, Internet of Things (IoT), Raspberry Pi, Thingspeak.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold
Related to Research communities