Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Real-Time Progressive Learning: Accumulate Knowledge From Control With Neural-Network-Based Selective Memory

Authors: Yiming Fei; Jiangang Li; Yanan Li;

Real-Time Progressive Learning: Accumulate Knowledge From Control With Neural-Network-Based Selective Memory

Abstract

Memory, as the basis of learning, determines the storage, update and forgetting of knowledge and further determines the efficiency of learning. Featured with the mechanism of memory, a radial basis function neural network based learning control scheme named real-time progressive learning (RTPL) is proposed to learn the unknown dynamics of the system with guaranteed stability and closed-loop performance. Instead of the Lyapunov-based weight update law of conventional neural network learning control (NNLC), which mainly concentrates on stability and control performance, RTPL employs the selective memory recursive least squares (SMRLS) algorithm to update the weights of the neural network and achieves the following merits: 1) improved learning speed without filtering, 2) robustness to hyperparameter setting of neural networks, 3) good generalization ability, i.e., reuse of learned knowledge in different tasks, and 4) guaranteed learning performance under parameter perturbation. Moreover, RTPL realizes continuous accumulation of knowledge as a result of its reasonably allocated memory while NNLC may gradually forget knowledge that it has learned. Corresponding theoretical analysis and simulation studies demonstrate the effectiveness of RTPL.

15 pages, 16 figures

Related Organizations
Keywords

FOS: Computer and information sciences, 93-10, FOS: Electrical engineering, electronic engineering, information engineering, Computer Science - Neural and Evolutionary Computing, Systems and Control (eess.SY), Neural and Evolutionary Computing (cs.NE), Electrical Engineering and Systems Science - Systems and Control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities