Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Radiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Radiology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Revolution or risk?—Assessing the potential and challenges of GPT-4V in radiologic image interpretation

Authors: Marc Sebastian Huppertz; Robert Siepmann; David Topp; Omid Nikoubashman; Can Yüksel; Christiane Katharina Kuhl; Daniel Truhn; +1 Authors

Revolution or risk?—Assessing the potential and challenges of GPT-4V in radiologic image interpretation

Abstract

Abstract Objectives ChatGPT-4 Vision (GPT-4V) is a state-of-the-art multimodal large language model (LLM) that may be queried using images. We aimed to evaluate the tool’s diagnostic performance when autonomously assessing clinical imaging studies. Materials and methods A total of 206 imaging studies (i.e., radiography (n = 60), CT (n = 60), MRI (n = 60), and angiography (n = 26)) with unequivocal findings and established reference diagnoses from the radiologic practice of a large university hospital were accessed. Readings were performed uncontextualized, with only the image provided, and contextualized, with additional clinical and demographic information. Responses were assessed along multiple diagnostic dimensions and analyzed using appropriate statistical tests. Results With its pronounced propensity to favor context over image information, the tool’s diagnostic accuracy improved from 8.3% (uncontextualized) to 29.1% (contextualized, first diagnosis correct) and 63.6% (contextualized, correct diagnosis among differential diagnoses) (p ≤ 0.001, Cochran’s Q test). Diagnostic accuracy declined by up to 30% when 20 images were re-read after 30 and 90 days and seemed unrelated to the tool’s self-reported confidence (Spearman’s ρ = 0.117 (p = 0.776)). While the described imaging findings matched the suggested diagnoses in 92.7%, indicating valid diagnostic reasoning, the tool fabricated 258 imaging findings in 412 responses and misidentified imaging modalities or anatomic regions in 65 images. Conclusion GPT-4V, in its current form, cannot reliably interpret radiologic images. Its tendency to disregard the image, fabricate findings, and misidentify details, especially without clinical context, may misguide healthcare providers and put patients at risk. Key Points Question Can Generative Pre-trained Transformer 4 Vision (GPT-4V) interpret radiologic images—with and without clinical context? Findings GPT-4V performed poorly, demonstrating diagnostic accuracy rates of 8% (uncontextualized), 29% (contextualized, most likely diagnosis correct), and 64% (contextualized, correct diagnosis among differential diagnoses). Clinical relevance The utility of commercial multimodal large language models, such as GPT-4V, in radiologic practice is limited. Without clinical context, diagnostic errors and fabricated findings may compromise patient safety and misguide clinical decision-making. These models must be further refined to be beneficial.

Keywords

Male, Diagnostic Imaging, Adult, Imaging Informatics and Artificial Intelligence, Image Interpretation, Computer-Assisted, Humans, Reproducibility of Results, 610, Female, Middle Aged, info:eu-repo/classification/ddc/610, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
hybrid