
Neural radiance fields have emerged as a dominant paradigm for creating complex 3D environments incorporating synthetic novel views. However, 3D object removal applications utilizing neural radiance fields have lagged behind in effectiveness, particularly when open set queries are necessary for determining the relevant objects. One such application area is in architectural heritage preservation, where the automatic removal of non-architectural objects from 3D environments is necessary for many downstream tasks. Furthermore, when modeling occupied buildings, it is crucial for modeling techniques to be privacy preserving by default; this also motivates the removal of non-architectural elements. In this paper, we propose a pipeline for the automatic creation of cleaned, architectural structure only point clouds utilizing a language embedded radiance field (LERF) with a specific application toward generating suitable point clouds for the structural integrity assessment of occupied buildings. We then validated the efficacy of our approach on the rooms of the historic Sion hospital, a national historic monument in Valais, Switzerland. By using our automatic removal pipeline on the point clouds of rooms filled with furniture, we decreased the average earth mover’s distance (EMD) to the ground truth point clouds of the physically emptied rooms by 31 percent. The success of our research points the way toward new paradigms in architectural modeling and cultural preservation.
privacy preservation, Archaeology, cultural heritage conservation, damage assessment, neural radiance field, LOD model, 3D scanning, CC1-960
privacy preservation, Archaeology, cultural heritage conservation, damage assessment, neural radiance field, LOD model, 3D scanning, CC1-960
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
