Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Heritagearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Heritage
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Heritage
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automatic Removal of Non-Architectural Elements in 3D Models of Historic Buildings with Language Embedded Radiance Fields

Authors: Alexander Rusnak; Bryan G. Pantoja-Rosero; Frédéric Kaplan; Katrin Beyer;

Automatic Removal of Non-Architectural Elements in 3D Models of Historic Buildings with Language Embedded Radiance Fields

Abstract

Neural radiance fields have emerged as a dominant paradigm for creating complex 3D environments incorporating synthetic novel views. However, 3D object removal applications utilizing neural radiance fields have lagged behind in effectiveness, particularly when open set queries are necessary for determining the relevant objects. One such application area is in architectural heritage preservation, where the automatic removal of non-architectural objects from 3D environments is necessary for many downstream tasks. Furthermore, when modeling occupied buildings, it is crucial for modeling techniques to be privacy preserving by default; this also motivates the removal of non-architectural elements. In this paper, we propose a pipeline for the automatic creation of cleaned, architectural structure only point clouds utilizing a language embedded radiance field (LERF) with a specific application toward generating suitable point clouds for the structural integrity assessment of occupied buildings. We then validated the efficacy of our approach on the rooms of the historic Sion hospital, a national historic monument in Valais, Switzerland. By using our automatic removal pipeline on the point clouds of rooms filled with furniture, we decreased the average earth mover’s distance (EMD) to the ground truth point clouds of the physically emptied rooms by 31 percent. The success of our research points the way toward new paradigms in architectural modeling and cultural preservation.

Keywords

privacy preservation, Archaeology, cultural heritage conservation, damage assessment, neural radiance field, LOD model, 3D scanning, CC1-960

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold