Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2023
License: CC BY
Data sources: Lirias
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2023
Data sources: IRIS Cnr
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assimilation of Sentinel-1 Backscatter into a Land Surface Model with River Routing and Its Impact on Streamflow Simulations in Two Belgian Catchments

Authors: Bechtold, Michel; Modanesi, Sara; Lievens, Hans; Baguis, Pierre; Brangers, Isis; Carrassi, Alberto; Getirana, Augusto; +6 Authors

Assimilation of Sentinel-1 Backscatter into a Land Surface Model with River Routing and Its Impact on Streamflow Simulations in Two Belgian Catchments

Abstract

Abstract Accurate streamflow simulations rely on good estimates of the catchment-scale soil moisture distribution. Here, we evaluated the potential of Sentinel-1 backscatter data assimilation (DA) to improve soil moisture and streamflow estimates. Our DA system consisted of the Noah-MP land surface model coupled to the HyMAP river routing model and the water cloud model as a backscatter observation operator. The DA system was set up at 0.01° resolution for two contrasting catchments in Belgium: (i) the Demer catchment dominated by agriculture and (ii) the Ourthe catchment dominated by mixed forests. We present the results of two experiments with an ensemble Kalman filter updating either soil moisture only or soil moisture and leaf area index (LAI). The DA experiments covered the period from January 2015 through August 2021 and were evaluated with independent rainfall error estimates based on station data, LAI from optical remote sensing, soil moisture retrievals from passive microwave observations, and streamflow measurements. Our results indicate that the assimilation of Sentinel-1 backscatter observations can partly correct errors in surface soil moisture due to rainfall errors and overall improve surface soil moisture estimates. However, updating soil moisture and LAI simultaneously did not bring any benefit over updating soil moisture only. Our results further indicate that streamflow estimates can be improved through Sentinel-1 DA in a catchment with strong soil moisture–runoff coupling, as observed for the Ourthe catchment, suggesting that there is potential for Sentinel-1 DA even for forested catchments. Significance Statement The purpose of this study is to improve streamflow estimation by integrating soil moisture information from satellite observations into a hydrological modeling framework. This is important preparatory work for operational centers that are responsible for producing the most accurate flood forecasts for the society. Our results provide new insights into how and where streamflow forecasting could benefit from high-spatial-resolution Sentinel-1 radar backscatter observations.

Keywords

INFORMATION, ACCURACY, Streamflow, RETRIEVALS, Meteorology & Atmospheric Sciences, WATER, Science & Technology, LEAF-AREA INDEX, SENSED SOIL-MOISTURE, RESOLUTION, Earth and Environmental Sciences, PRECIPITATION, Physical Sciences, Data assimilation, Streamflow; Hydrology; Soil moisture; Radars/Radar observations; Data assimilation; Land surface model, RUNOFF GENERATION, VEGETATION, 0401 Atmospheric Sciences, Radars/Radar observations, Soil moisture, Hydrology, Land surface model, 3701 Atmospheric sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green