Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
RENDICONTI LINCEI
Article . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2023
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New UTfit analysis of the unitarity triangle in the Cabibbo–Kobayashi–Maskawa scheme

Authors: Bona, M; Ciuchini, M; Derkach, D; Ferrari, F; Franco, E; Lubicz, V; Martinelli, S; +13 Authors

New UTfit analysis of the unitarity triangle in the Cabibbo–Kobayashi–Maskawa scheme

Abstract

Flavour mixing and CP violation as measured in weak decays and mixing of neutral mesons are a fundamental tool to test the Standard Model (SM) and to search for new physics. New analyses performed at the LHC experiment open an unprecedented insight into the Cabibbo-Kobayashi-Maskawa (CKM) metrology and new evidence for rare decays. Important progress has also been achieved in theoretical calculations of several hadronic quantities with a remarkable reduction of the uncertainties. This improvement is essential since previous studies of the Unitarity Triangle did show that possible contributions from new physics, if any, must be tiny and could easily be hidden by theoretical and experimental errors. Thanks to the experimental and theoretical advances, the CKM picture provides very precise SM predictions through global analyses. We present here the results of the latest global SM analysis performed by the UTfit collaboration including all the most updated inputs from experiments, lattice QCD and phenomenological calculations.

Keywords

rare decay, [PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex], Lattice QCD, [PHYS.HLAT] Physics [physics]/High Energy Physics - Lattice [hep-lat], meson, 530, decay, search for, CP violation; Heavy quark physics; Lattice QCD; Quark masses and SM Parameters;, weak interaction, [PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex], unitarity, mixing, flavor, [PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat], new physics, lattice field theory, Quark masses and SM Parameters, Heavy quark physics, [PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph], CP violation, CERN LHC Coll, CP, [PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph], CKM matrix, violation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 1%
Top 10%
Top 1%
Green