Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of the effects of alloying with Si and Cr on the properties of manganese austenite based on AB INITIO modelling

Authors: Prysyazhnyuk, Pavlo; Shlapak, Liubomyr; Semyanyk, Iryna; Kotsyubynsky, Volodymyr; Troshchuk, Liubomyr; Korniy, Sergiy; Artym, Volodymyr;

Analysis of the effects of alloying with Si and Cr on the properties of manganese austenite based on AB INITIO modelling

Abstract

This paper reports a study into estimating the impact of dissolved Si and Cr on the crystalline structure, certain mechanical characteristics, and stability of manganese austenite. The theoretical study was based on the first-principle calculations within a density functional theory (DFT) for austenite structures, which were modeled in the form of 2×2×2 superlattices based on a face-centered cubic lattice. Atoms in the model superlattices were arranged considering the experimental results from analyzing the Mossbauer spectrum and the X-ray phase analysis of experimental alloys corresponding to high manganese steels. The superlattices that represented the structure of the alloyed austenite contained the C atom in the central octahedral pore, which, relative to the Si(Cr) and Mn atoms, was located in the first and second coordinating spheres, respectively. The analysis of calculation results reveals that the dissolution of Si and Cr in manganese austenite leads to an increase in the stability of the austenite phase, both according to the results from modeling within the DFT and based on the findings from the thermodynamic analysis. At the same time, the austenite phase is transferred to the region of plastic materials according to the ratio of the volumetric elasticity to shear modules of ≥1.75 (a B/G criterion). Determining the density of electronic states shows that among the structures studied, the lowest number of electrons at the Fermi level, which indicates the highest electrochemical stability, is characterized by manganese austenite alloyed by Cr. The results of this study provide grounds for expanding the systems of alloying high manganese steels by introducing a significant amount (up to 10 at. %) of Si and Cr, in particular for the application of wear, shock, and corrosion-resistant coatings by the method of electric arc surfacing

Keywords

високомарганцева сталь; першопринципні розрахунки; месбауерівська спектроскопія; легуючі елементи; зносостійкі покриття, high manganese steel; first-principle calculations; Mossbauer spectroscopy; alloying elements; wear-resistant coatings, высокомарганцевая сталь; первопринцыпные расчеты; мессбауэровская спектроскопия; легирующие элементы; износостойкие покрытия., UDC 538.9

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 5
    download downloads 9
  • 5
    views
    9
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
4
Top 10%
Average
Average
5
9
Green
gold