
Islanded DC microgrids are vulnerable to voltage instability caused by excessive power demand, which can adversely impact downstream consumers and disrupt overall microgrid operation. Existing load-shedding techniques face limitations such as over-shedding due to fixed voltage thresholds and time delays, predetermined load-shedding actions that fail to account for disturbance magnitude, and delayed stabilization caused by sequential load-shedding steps. To address these challenges, this paper proposes a novel load-shedding strategy for islanded DC microgrids that integrates a short-timer mechanism with Mixed Integer Linear Programming (MILP) optimization. The proposed approach reduces reliance on communication systems and achieves optimal load-shedding decisions using local voltage measurements. Simulation results on a DC microgrid model adapted from the IEEE 37-bus network demonstrate the effectiveness of the proposed scheme. The scheme results in a 20% reduction in unnecessary load shedding, an 18% improvement in voltage stabilization (measured as the final voltage after a disturbance), and a 25% decrease in response time compared to conventional methods. The results show that the proposed strategy ensures that the DC bus voltage remains above the critical threshold of 720 V, enhancing system reliability by minimizing voltage transients, reducing regulation time, and maintaining power balance. These improvements highlight the potential of the proposed scheme to support robust, secure, and resilient DC microgrid operation.
Electrical engineering. Electronics Nuclear engineering, 330, load shedding, DC microgrid, Electrical engineering. Electronics. Nuclear engineering, mixed-integer linear programming, optimization, resilience, 620, distributed energy resources, TK1-9971
Electrical engineering. Electronics Nuclear engineering, 330, load shedding, DC microgrid, Electrical engineering. Electronics. Nuclear engineering, mixed-integer linear programming, optimization, resilience, 620, distributed energy resources, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
