
Magnetic tapes are often considered as an outdated storage technology, yet they are still used to store huge amounts of data. Their main interests are a large capacity and a low price per gigabyte, which come at the cost of a much larger file access time than on disks. With tapes, finding the right ordering of multiple file accesses is thus key to performance. Moving the reading head back and forth along a kilometer long tape has a non-negligible cost and unnecessary movements thus have to be avoided. However, the optimization of tape request ordering has rarely been studied in the scheduling literature, much less than I/O scheduling on disks. For instance, minimizing the average service time for several read requests on a linear tape remains an open question. Therefore, in this paper, we aim at improving the quality of service experienced by users of tape storage systems, and not only the peak performance of such systems. To this end, we propose a reasonable polynomial-time exact algorithm while this problem and simpler variants have been conjectured NP-hard. We also refine the proposed model by considering U-turn penalty costs accounting for inherent mechanical accelerations. Then, we propose a low-cost variant of our optimal algorithm by restricting the solution space, yet still yielding an accurate suboptimal solution. Finally, we compare our algorithms to existing solutions from the literature on logs of the mass storage management system of a major datacenter. This allows us to assess the quality of previous solutions and the improvement achieved by our low-cost algorithm. Aiming for reproducibility, we make available the complete implementation of the algorithms used in our evaluation, alongside the dataset of tape requests that is, to the best of our knowledge, the first of its kind to be publicly released.
Simulations, FOS: Computer and information sciences, Dynamic Programming, Scheduling, Magnetic Tapes, Exact Algorithm, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Data Structures and Algorithms, [INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing (cs.DC)
Simulations, FOS: Computer and information sciences, Dynamic Programming, Scheduling, Magnetic Tapes, Exact Algorithm, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Data Structures and Algorithms, [INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing (cs.DC)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
