Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PRX Quantumarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PRX Quantum
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal Trace-Distance Bounds for Free-Fermionic States: Testing and Improved Tomography

Authors: Lennart Bittel; Antonio Anna Mele; Jens Eisert; Lorenzo Leone;

Optimal Trace-Distance Bounds for Free-Fermionic States: Testing and Improved Tomography

Abstract

Free-fermionic states, also known as fermionic Gaussian states, represent an important class of quantum states that are ubiquitous in physics. They are uniquely and efficiently described by their correlation matrix. However, in practical experiments, the correlation matrix can only be estimated with finite accuracy. This raises the question: How does the error in estimating the correlation matrix affect the trace-distance error of the state? We show that if the correlation matrix is known with an error ε, the trace-distance error also scales as ε (and vice versa). Specifically, we provide distance bounds between (both pure and mixed) free-fermionic states in relation to their correlation-matrix distance. Our analysis also extends to cases in which one state may not be free-fermionic. Importantly, we leverage our preceding results to derive significant advancements in property testing and tomography of free-fermionic states. Property testing involves determining whether an unknown state is close to or far from being a free-fermionic state. We first demonstrate that any algorithm capable of testing arbitrary (possibly mixed) free-fermionic states would inevitably be inefficient, implying that there is no efficient strategy to estimate the non-Gaussianity of a state. Then, we present an efficient algorithm for testing low-rank free-fermionic states. For free-fermionic state tomography, we provide improved bounds on the sample complexity in the pure-state scenario, substantially improving over previous literature, and we generalize the efficient algorithm to mixed states, discussing its noise robustness.

Related Organizations
Keywords

Quantum Physics, Quantum information processing, FOS: Physical sciences, Quantum tomography, Mathematical Physics (math-ph), Quantum algorithms & computation, Quantum Physics (quant-ph), 530, Mathematical Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green