Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Вестник Южно-Уральск...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mathematical Formulation of a Switch Reluctance Generator with Capacitor Excitation

Математическое описание вентильного индукторного генератора с конденсаторным возбуждением
Authors: Voronin, S.G.; Chernyshev, A.D.;

Mathematical Formulation of a Switch Reluctance Generator with Capacitor Excitation

Abstract

Autonomous power plants have been given a boost by the development of electric vehicles. The presented power plant based on a switch reluctance machine with a new principle of phase winding excitation is a new technical solution. The new principle of exciting phase windings is based on the features of such electrical machines’ operation. This feature is the trapezoidal form of the phase voltages. This allows switching and excitation of phase windings in the natural mode. That is, this technical solution eliminates the need for tracking and switching phase currents depending on the position of the rotor. The winding is excited by switching capacitors of the idle phase. This can greatly simplify and reduce the cost of electronic control equipment of the switch reluctance generator. Due to the design novelty, the considered technical solution has not previously been investigated by either foreign or domestic scientists. This article provides a mathematical description of the work and developed a mathematical model of the switch reluctance generator with capacitor excitation. This mathematical model allows computing the current and EMF in the electrical machine, and in the external electric circuit, and the value of the torque. The presented results of calculations and experiments confirm the adequacy of the mathematical model. The developed model allows one to visually examine the electromagnetic processes, the performance and functioning of the system in various modes under various external influences, to develop control algorithms and evaluate the energy performance of the generator. The model can also be the basis for a technique of designing and construction of new facilities.

Keywords

автономная энергетическая установка, математическая модель, УДК 621.313.1, autonomous power plant, вентильный индукторный генератор, электрическая машина, switch reluctance generator, electric machine, mathematical model

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold